
Max-Weight Integral Multicommodity Flow in Spiders and

High-Capacity Trees

Jochen Könemann1, Ojas Parekh2, and David Pritchard1

1 University of Waterloo
jochen@math.uwaterloo.ca, dagpritchard@math.uwaterloo.ca

Dept. of Combinatorics & Optimization, 200 University Avenue West,
Waterloo, Ontario, Canada, N2L 3G1. Fax: 519-725-5441

2 Emory University
ojas@mathcs.emory.edu

Math/CS Department, 400 Dowman Dr., Suite 401,
Atlanta, GA, USA, 30322. Fax: 404-727-5611

Abstract. We consider the max-weight integer multicommodity flow problem in trees. In this problem
we are given an edge-capacitated tree and weighted pairs of terminals, and the objective is to find a
max-weight integral flow between terminal pairs subject to the capacities. This problem was shown
to be APX-hard by Garg, Vazirani and Yannakakis [Algorithmica, 1997], and a 4-approximation was
given by Chekuri, Mydlarz and Shepherd [ACM Trans. Alg., 2007]. Some special cases are known to
be solvable in polynomial time, including when the graph is a star (via b-matching) or a path.
First, when every edge has capacity at least µ ≥ 2, we use iterated relaxation to obtain an improved
approximation ratio of min{3, 1+4/µ+6/(µ2−µ)}. We show this ratio bounds the integrality gap of the
natural LP relaxation. A complementary hardness result yields a 1+Θ(1/µ) threshold of approximability
(if P 6= NP). Second, we extend the range of instances for which exact solutions can be found efficiently.
When the tree is a spider (i.e. if only one vertex has degree greater than 2) we give a polynomial-time
algorithm to find an optimal solution, as well as a polyhedral description of the integer hull of all
feasible solutions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24061539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In the max-weight integral multicommodity flow problem (WMCF), we are given an undirected
supply graph G = (V,E), terminal pairs (s1, t1), . . . , (sk, tk) where si, ti ∈ V , non-negative weights
w1, . . . , wk, and non-negative integral edge-capacities ce for all e ∈ E. The goal is to simultaneously
route integral si-ti flows of value yi subject to the capacities, so as to maximize the weight

∑
wiyi.

The single-commodity version (k = 1) of WMCF is well-known to be solvable in polynomial
time. If we drop the integrality restriction the problem can be solved in polynomial time via
linear programming for any k. However, when integrality is required, even the 2-commodity unit-
capacity, unit-weight version is NP-complete — see Even, Itai, and Shamir [12]. Moreover, recent
results of Andrews et al. [1, 2] show that WMCF is polylogarithmically hard to approximate unless
NP ⊂ ZPTIME(npolylog(n)), even with unit capacities and weights.

One avenue investigated by several papers, in which polylog-inapproximability does not apply,
is the special case where the supply graph G is a tree, which we denote by WMCFT. Garg, Vazirani
and Yannakakis [15] considered the unit-weight case and showed APX-hardness even if G’s height
is at most 3 and all capacities are 1 or 2; but on the positive side, they gave a 2-approximate
polynomial-time primal-dual algorithm. Techniques of Garg et al. show that WMCFT can be solved
in polynomial time when G has unit capacity (using dynamic programming and matching) or is a
star (this problem is essentially equivalent to b-matching). The case where G is a path (so-called
interval packing) is also polynomial-time solvable [5, 7, 17], e.g. by linear programming since the
natural LP has a totally unimodular constraint matrix. For general WMCFT, without restrictions
on capacities or weights, Chekuri, Mydlarz and Shepherd [7] gave a 4-approximation algorithm,
and this remains the best ratio known to date.

Results. Throughout the paper, we use µ to denote the minimum capacity of any edge in the
WMCFT instance. In the first part of the paper we use iterated rounding/relaxation to develop
improved approximation ratios for WMCFT when µ is suitably large. Iterated relaxation yields an
integral solution with optimal value or better but exceeding edge capacities by up to 2 (additively).
This resolves a problem stated in Chekuri et al. [7]; in their words we prove “the c-relaxed integrality
gap is 1” for c = 2 whereas they could not prove it for any constant c.3

The best prior approach for WMCFT with high capacities was randomized LP rounding [22],
which gives a 1 + O(

√
log |V |/µ)-approximation algorithm. An improvement can be obtained by

plugging the iterated rounding result into Chekuri et al. [7, Cor. 3.5], giving a 1 + O(1/
√

µ) ap-
proximation. Our first main result gives an even better result for large capacities and also improves
on the previous best ratio of 4 when µ ≥ 2.

Theorem 1 For WMCFT, there are polynomial-time algorithms achieving (a) approximation ratio
3 for µ ≥ 2, and (b) approximation ratio (1 + 4/µ + 6/(µ2 − µ)) for general µ.

A slight modification of Garg et al.’s hardness proof shows that for some ǫ > 0, for all µ ≥ 2, it is
NP-hard to approximate WMCFT within a ratio of 1+ǫ/µ; we detail this modification in Appendix
A. Thus (if P 6= NP) the ratio in Theorem 1(b) is tight up to the constant in the 1

µ term.
Our methodology for Theorem 1 is to decrease the additively-violating solution towards feasi-

bility, without losing too much weight. Part (a) uses an argument of Cheriyan, Jordán and Ravi
[8]. Part (b) relies on an auxiliary covering problem; every feasible cover, when subtracted from

3 To say that the c-relaxed integrality gap is 1 for an LP means that, where OPT is the LP’s optimum, there is an
integral solution of value at least OPT but violating each constraint by up to +c. E.g. when c = 0 this means the
LP has an integral optimum.

2

the +2-violating WMCFT solution, results in a feasible WMCFT solution. An approach due to
Jain [18] shows that iterated LP rounding, applied to the auxiliary problem, leads to a provably
low-weight integral solution for the covering problem. A crucial fact in obtaining Theorem 1(b) is
that the approximation guarantee of Jain’s approach is relative to the optimal fractional solution
of the natural LP.

Our second result maps out more of the landscape of “easy” and “hard” WMCFT instances.
An all-ror instance is one in which, for some choice of root vertex, each commodity path either
goes through the root or is radial. (A path is radial if one of its endpoints is an ancestor of the
other with respect to the root.) For example, every instance of WMCFT in which G is a spider is
an all-ror instance.

Theorem 2 All-ror WMCFT instances can be solved in strongly polynomial time.

One way to view this result is as an efficient solution for a common generalization of b-matching
and interval packing. Our proof of Theorem 2 is via a combinatorial reduction to bidirected flow [9].
This reduction also yields a polyhedral characterization of the feasible solutions for all-ror instances.

The methodology behind Theorems 1(b) and 2 is general enough that analogous results can be
obtained for covering problems, although we omit the details from this paper. We remark that our
application of iterated rounding is somewhat simpler than previous ones since we do not need to
“uncross” LP solutions.

Related Work. WMCFT appears in the literature under a variety of names including cross-
free-cut matching [15] in the unit-capacity case and packing of a laminar family [8]. One gener-
alization is the demand version [7] in which each commodity i is given a requirement ri and we
require yi ∈ {0, ri} for each feasible solution.

The word bidirected has two meanings in the literature. We discuss bidirected flows later. In
contrast, a bidirected tree is obtained from an undirected tree by replacing each edge by two antipar-
allel directed edges. WMCF extends naturally to directed graphs (with directed demand edges). A
slight modification of Garg et al.’s hardness proof shows that WMCF on bidirected trees is APX-
hard even for unit capacities and weights. On the other hand, WMCF on bidirected trees admits
a (5

3 + ǫ)-approximation for unit capacities [10] and a 4-approximation [7] for general capacities.
On bidirected trees obtained from paths, stars, and spiders the problem can be solved in polyno-
mial time, e.g., by reduction to a max-weight circulation problem, see also [11]. We remark that
analogues of Theorems 1(b) and 2 can easily be obtained for bidirected trees.

The WMCF problem on unit capacity trees is equivalent to the weighted edge-disjoint paths
(WEDP) problem. The polylog-hardness results on general graphs [1, 2] apply to WEDP even with
unit weights, however for fixed k, WEDP with at most k commodities is polynomial-time solvable.
See e.g. [23, §70.5] for further discussion.

The extreme points of the natural LP for WMCFT arise frequently in the literature of LP-based
network design [7, 8, 10, 13, 14, 16, 18, 20, 25]. From this perspective, WMCFT is a natural starting
point for an investigation of how large capacities/requirements affect the difficulty of weighted
network design problems. As far as we are aware, our results for general weights are novel, but for
unit weights Gabow et al. [13, 14] gave a result analogous to Theorem 1(b) for the k-edge-connected
spanning subgraph problem, obtaining a 1 + Θ(1/k) threshold of approximation.

Organization of the Paper. Section 1.1 contains some basic definitions and notation. In
Section 2 we give the proof of Theorem 1. In Section 3 we provide a proof of Theorem 2. In Section
3.1, we state our polyhedral results. Finally, we suggest some directions for future work in Section
4.

3

1.1 Formulation

Since the supply graph and demand edges are undirected, without loss of generality we define the
commodities by a set of demand edges D = {{s1, t1}, . . . , {sk, tk}} on vertex set V with a weight
wd assigned to each demand edge d ∈ D. Since we discuss WMCF only on undirected trees, each
commodity has a unique path along which flow is sent. For each demand edge d, let its demand path
pd be the unique path in G joining the endpoints of d. We thus may represent a multicommodity
flow by a vector {yd}d∈D where yd is the amount of commodity d that is routed (along pd). Then
a flow y is feasible if it meets the two conditions

∀d ∈ D : yd ≥ 0 (1)

∀e ∈ E :
∑

d:e∈pd

yd ≤ ce (2)

The objective of WMCFT is to find a feasible integral y that maximizes w · y.

2 Improved Approximation

In this section we obtain a min{3, 1 + 4/µ + 6/(µ2 − µ)}-approximation algorithm for WMCFT,
assuming ce ≥ µ ≥ 2 for each edge e. The algorithm uses the iterated rounding paradigm, which
was used first by Jain [18] and more recently by Singh & Lau [25] and others [4, 13, 20] for network
design. The idea is that in each iteration, we use the optimal fractional solution y∗ of the natural
LP to develop an integral solution. If some demand edge d has value 1 or greater in y∗, we route
the integer part and decrease the capacity of edges on pd accordingly. If 0 < y < 1 we perform
a relaxation step; a counting argument (Section 2.3) guarantees that a particular relaxation can
always be performed. At the end, we obtain an integral solution which exceeds the capacity of each
edge by at most 2, and which has weight at least as large as that of an optimal feasible solution. In
Sections 2.1 and 2.2 we show how to compute high-weight feasible solutions from this +2-violating
solution.

The natural LP for WMCFT, which we denote by P0, is as follows:

(P0) : maximize w · y subject to (1) and (2).

This program has a linear number of variables and constraints, and thus can be solved in polynomial
time. Any integral vector y is feasible for P0 iff it is feasible for the WMCFT instance. However,
the linear program has fractional extreme points in general, and thus solving the LP does not give
us the type of solution we seek. Nonetheless, optimal solutions to the LP have certain properties
that permit an iterated rounding approach, such as the following.

Lemma 3 Let y∗ be an optimal solution to P0, define OPT = w · y∗, and suppose y∗d ≥ t for some
d ∈ D and some integer t ≥ 1. Reduce the capacity of each edge e ∈ pd by t and let OPT ′ denote
the new optimal value of P0. Then OPT ′ = OPT − twd.

Proof. Let z denote the vector such that zd = t and zd′ = 0 for each d′ 6= d. Then it is easy to see
that y∗ − z is feasible for the new LP, and hence OPT ′ ≥ w · (y∗ − z) = OPT − twd. On the other
hand, where y′ denotes the optimal solution to the new LP, it is easy to see that y′ + z is feasible
for the original LP; so OPT ≥ OPT ′ + twd. Combining these inequalities, we are done. ⊓⊔

4

From now on, let OPT denote the optimal value to P0.
In general terms, our iterated rounding approach works on the following principles. Define the

following restricted version of P0:

(P0) : maximize w · y subject to (1) and (2) and ∀d ∈ D : yd ≤ 1.

Assume for the moment that P0 also has optimal value OPT . We iteratively build an integral
solution to P0 with value at least equal to OPT . The first step in each iteration is to solve P0,
obtaining solution y∗. If y∗d = 0 for some demand edge d, then we can discard d without affecting
the optimal value of P0. If y∗d = 1 for some d, then we can route one unit of flow along pd and
update capacities accordingly. Similar to Lemma 3, the optimal LP value will drop by an amount
equal to the weight of the flow that was routed. If neither of these cases applies, we use the following
lemma, whose proof appears in Section 2.3.

Lemma 4 Suppose that y∗ is an extreme point solution to P0, and that 0 < y∗d < 1 for each demand
edge d ∈ D. Then there is an edge e ∈ E so that |{d ∈ D : e ∈ pd}| ≤ 3.

Our algorithm discards the capacity constraint (2) for e from our LP. We call this contracting e
because the effect is the same as if we had merged the two endpoints of e in the tree G. Pseudocode
for our algorithm is given in Figure 1.

IteratedSolver

1. Set ŷ = 0

2. If D = ∅ terminate and return ŷ
3. Let y∗ be an optimal extreme point solution to P0

4. For each d such that y∗

d = 0, discard d
5. For each d such that y∗

d = 1, increase ŷd by 1, decrease ce by 1 for each e ∈ pd, and discard d
6. If neither step 4 nor 5 applied, find e as specified by Lemma 4 and contract e
7. Go to step 2

Fig. 1. The iterated rounding algorithm.

To justify our assumption that P0 and P0 have the same optimal value, we preprocess the
problem as follows. First, we compute any optimal solution y∗ to P0. Then we route the integer
part ⌊y∗⌋ of the solution (i.e., we initialize ŷ = ⌊y∗⌋) and reduce each capacity ce by

∑
d:e∈pd

⌊y∗d⌋.
The residual problem has 〈y∗〉 := y∗ − ⌊y∗⌋ as an optimal solution, and since 0 ≤ 〈y∗〉 ≤ 1, our
assumption is now justified.

Assuming Lemma 4, we now prove the main properties of our iterated rounding algorithm: it
runs in polynomial time, it exceeds each capacity by at most 2, and it produces a solution of value
at least OPT .

Property 1 IteratedSolver runs in polynomial time.

Proof. Recall that P0 and P0 can be solved in polynomial time. In each iteration we decrease
|D| + |E|, so polynomially many iterations occur, and the result follows. ⊓⊔

Property 2 The integral solution computed by IteratedSolver violates each capacity constraint
(2) by at most 2.

5

Proof. Consider what happens to any given edge e during the execution of the algorithm. In the
preprocessing and in each iteration, the flow routed through e equals the decrease in its residual
capacity. If in some iteration, e’s residual capacity is decreased to 0, all demand paths through e
will be discarded in the following iteration. Thus if e is not contracted, its capacity constraint (2)
will be satisfied by the final solution.

The other case is that we contract e in step 6 of some iteration because e lies on at most 3
demand paths. The residual capacity of e is at least 1, and at most one unit of flow will be routed
along each of these 3 demand paths in future iterations. Hence the final solution violates (2) for e
by at most +2. ⊓⊔

Property 3 The integral solution computed by IteratedSolver has objective value at least equal
to OPT .

Proof. When we contract an edge e we just remove a constraint from P0, which cannot decrease
the optimal value of P0 since it is a maximization LP. In every other iteration and in preprocessing,
Lemma 3 implies that the LP optimal value drops by an amount equal to the increase in w · ŷ.
When termination occurs, the optimal value of P0 is 0. Thus the overall weight of flow routed must
be at least as large as the initial value of OPT . ⊓⊔

2.1 Minimum Capacity µ = 2

As per Property 2, our iterated solver may exceed some of the edge capacities. When ce ≥ µ ≥ 2
for each edge e we can invoke the following theorem, which appears as Thm. 6 in [8], to produce a
high-weight feasible solution.

Theorem 5 (Cheriyan, Jordán, Ravi) Suppose that ŷ is a nonnegative integral vector so that
for each edge e, the constraint (2) is violated by at most a multiplicative factor of 2 by ŷ. Then in
polynomial time, we can find an integral vector y′ with w · y′ ≥ (w · ŷ)/3, and 0 ≤ y′ ≤ ŷ, and such
that y′ satisfies all constraints (2).

The algorithm as literally described in [8] is actually pseudo-polynomial, but it is straightforward
to modify it to have polynomial running time — see Appendix B. We are now able to prove part
(a) of Theorem 1.

Proof (of Theorem 1(a)). Let ŷ be the output of IteratedSolver. Since ce ≥ 2 for each edge e,
and since by Property 2 each edge’s capacity is additively violated by at most +2, Theorem 5 applies.
Thus y′ is a feasible solution to the WMCFT instance with objective value w ·y′ ≥ w ·ŷ/3 ≥ OPT/3,
using Property 3. Finally, since P0 is an LP-relaxation of the WMCFT problem, OPT is at least
equal to the optimal WMCFT value, and so y′ is a 3-approximate feasible integral solution. ⊓⊔

2.2 Arbitrary Minimum Capacity

Given the infeasible solution ŷ produced by IteratedSolver, we want to reduce ŷ in a minimum-
weight way so as to attain feasibility. For each edge e let fe = max{0,∑d:e∈pd

ŷd − ce}, i.e. fe is the
amount by which ŷ violates the capacity of e. Note now that a reduction z with 0 ≤ z ≤ ŷ makes
ŷ − z a feasible (integral) WMCFT solution if and only if z is a feasible (integral) solution to the
following linear program.

(Pc) : minimize w · z subject to 0 ≤ z ≤ ŷ and ∀e ∈ E :
∑

d:e∈pd

zd ≥ fe.

6

Notice that Pc is a covering analogue of P0 (with added upper bounds). Furthermore, the integer
program Pc can be 2-approximately solved using Jain’s iterated rounding framework [18].

Theorem 6 There is a polynomial-time algorithm which returns an integral feasible solution ẑ for
Pc such that w · ẑ is at most twice the LP optimal value of Pc.

Proof. The idea is very similar to the main result of [18] but simpler in that no uncrossing is needed,
because we already have a tree structure. Hence we only sketch the details. In each iteration, we
obtain an extreme point optimal solution z∗ to the linear program Pc. We increase ẑ by the integer
part of z∗ and accordingly decrease the requirements f . If z∗d = 0, d is discarded. Finally if 0 < z∗ < 1
a token redistribution argument of Jain shows that some d∗ ∈ D has z∗d∗ ≥ 1/2. In this case we
increase ẑd∗ by 1 and update the requirements accordingly. Standard arguments then give the
claimed bound on the cost of ẑ and polynomial running time. ⊓⊔

Here is how we use Theorem 6 to approximate WMCFT instances on trees.

Proof (of Theorem 1(b)). Notice that z = 2
µ+2 ŷ is a feasible fractional solution to Pc. Hence, the

optimal value of Pc is at most 2
µ+2 ŷ · w. Thus the solution ẑ produced by Theorem 6 satisfies

ẑ · w ≤ 4
µ+2 ŷ · w, so ŷ − ẑ is a feasible solution to the WMCFT problem, with w · (ŷ − ẑ) ≥

(1 − 4
µ+2)ŷ · w ≥ (1 − 4

µ+2)OPT . This gives us a 1/(1 − 4
µ+2) = 1 + 4/µ + O(1/µ2) approximation

algorithm for WMCFT.
To obtain the exact bound claimed in Theorem 1(b), we refine this slightly by taking a two-

round approach. In the first round we set fe to be the characteristic vector of those edges which ŷ
violates by +2, obtaining ŷ′ := ŷ−ẑ. Then ŷ′ has only +1 additive violation, and the same reasoning
as before shows ŷ′ · w ≥ (1 − 2

µ+2)OPT . The second round analogously extracts from ŷ′ a feasible

solution with weight at least (1− 2
µ+1)ŷ′ ·w. This gives approximation ratio 1/(1− 2

µ+2)(1− 2
µ+1) =

1 + 4/µ + 6/(µ2 − µ), as desired. ⊓⊔

2.3 Proof of Lemma 4

First, we need the following simple counting argument.

Lemma 7 Let T be a tree with n vertices and let ni denote the number of its vertices that have
degree i. Then n1 > (n − n2)/2.

Proof. Using the handshake lemma and the fact that T has n−1 edges, we have 2(n−1) =
∑

i i ·ni.
But

∑
i i · ni ≥ n1 + 2n2 + 3(n − n1 − n2) = 3n − 2n1 − n2 and hence 2n − 2 ≥ 3n − 2n1 − n2.

Solving for n1 gives n1 ≥ (n − n2 + 2)/2 as needed. ⊓⊔

Proof (of Lemma 4). Using basic facts from polyhedral combinatorics, it follows that there exists
a set E∗ ⊂ E of edges with |E∗| = |D| such that y∗ is the unique solution to

∑

d∈D:e∈pd

yd = ce ∀e ∈ E∗. (3)

In particular, the characteristic vectors of the sets {d : e ∈ pd} for e ∈ E∗ are linearly independent.
Contract each edge of E\E∗ in (V,E), resulting in the tree T ′ = (V ′, E∗); call elements of V ′

nodes. We now use a counting argument to establish the existence of the desired edge e within E∗.

7

We call the two ends of each d ∈ D endpoints and say that node v′ ∈ V ′ owns k endpoints when
the degree of v′ in (V ′,D) is k.

First, consider any node v′ ∈ V ′ that has degree 2 in T ′; let e1, e2 be its incident edges in T ′.
If v′ owns no endpoints then {d : e1 ∈ pd} = {d : e2 ∈ pd}, contradicting linear independence. If
v′ owns exactly one endpoint, the symmetric difference {d : e1 ∈ pd}△{d : e2 ∈ pd} consists of a
single demand edge; but since y∗ satisfies (3), 0 < y∗ < 1, and c is integral, this is a contradiction.
Hence v′ owns two or more endpoints.

If there exists a leaf node v′ of T ′ that owns at most 3 endpoints then we are done, since this
implies that the edge of E∗ incident to v′, viewed in the original graph, lies on a most 3 demand
paths. Otherwise, we apply a counting argument to T ′, seeking a contradiction. Let ni denote the
number of nodes of T ′ of degree i. Then our previous arguments establish that the total number of
endpoints is at least 4n1 + 2n2. Lemma 7 then shows that the total number of endpoints is more
than 2(|V ′| − n2) + 2n2 = 2|V ′| > 2|E∗| = 2|D|. This is the desired contradiction, since there are
only 2|D| endpoints in total. ⊓⊔

We remark that Lemma 4 is tight in the following sense: if we replace the bound |{d ∈ D : e ∈
pd}| ≤ 3 with |{d ∈ D : e ∈ pd}| ≤ 2, the resulting statement is false. An example of an extreme
point solution for which the modified version fails, due to Cheriyan et al. [8], is given in Figure 2.

Fig. 2. An extreme point solution to P0. There are 9 edges in the supply graph, shown as thick lines; each has
capacity 1. There are 9 demand edges, shown as thin lines; the solid ones have value 1/2, and the dashed ones have
value 1/4. This is a tight example for Lemma 4 because each edge lies on at least three demand paths.

3 Exact Solution for Spiders

In this section we show that WMCFT can be exactly solved in polynomial time when the supply
graph is a spider. (A spider is a tree with exactly one vertex of degree greater than 2.) Call the
vertex of degree ≥ 3 the root of the spider. Call each maximal path having the root as an endpoint
a leg of the spider. Observe that in WMCFT when (V,E) is a spider, each demand path pd either
goes through the root, or else lies within a single leg.

Definition 8 Consider an instance of WMCFT on graph (V,E). With respect to a chosen root
vertex r ∈ V , a demand edge d is said to be

root-using, if r is an internal vertex of pd;

8

radial, if one endpoint of d is a descendant of the other, with respect to the orientation of (V,E)
induced by the root r.

The instance is all-ror (short for “all root-using or radial”) if there exists a choice of r ∈ V for
which every demand edge is either root-using or radial.

Instances with only radial demand paths can be exactly solved via the LP P0 since the constraint
matrix is unimodular. Instances with only root-using demand paths can be solved using a matching
approach, see e.g. the work of Nguyen [21]. To solve all-ror instances in general we use bidirected
flows, which were introduced by Edmonds and Johnson [9]. Bidirected flow problems can be solved
via a combinatorial reduction to b-matching (e.g., see [23]) which increases the instance size by a
constant factor. We present in this section a reduction from all-ror WMCFT to bidirected flow.

A bidirected graph is an undirected graph together with, for each edge e and each of its endpoints
v ∈ e, a sign σv,e ∈ {−1,+1}. Thus an edge can have two negative ends, two positive ends, or one
end of each type; these are respectively called negative edges, positive edges, and directed edges.
We will speak of directed edges as having the +1 end as their head and −1 end as their tail. An
instance of capacitated max-weight bidirected flow is an integer program of the following form.

maximize
∑

e∈E

πexe (4)

∀v ∈ V : av ≤
∑

e∋v

σv,exe ≤ bv (5)

∀e ∈ E : ℓe ≤ xe ≤ ue (6)

x integral (7)

When a = b = 0 and all edges are directed, (4)–(7) becomes a max-weight circulation problem;
when all edges are positive and a = 0, (4)–(7) becomes a b-matching problem. We now describe
the reduction.

Proof (of Theorem 2). Let r denote the root vertex, i.e., assume every demand edge is either radial
or root-using with respect to r. We construct a bidirected graph whose underlying undirected graph
is (V,E ∪D). Make each edge e ∈ E directed, with head pointing towards r in the tree (V,E). We
make each root-using d ∈ D a positive edge; we make each radial d ∈ D a directed edge, with head
pointing away from r. See Figure 3 for an illustration.

Set ar = −∞, br = +∞ and av = bv = 0 for each v ∈ V \{r} in the bidirected flow problem
(4)–(7). For each demand edge d ∈ D, call C(d) := {d} ∪ pd the demand cycle of d. For a set F let
χF denote the characteristic vector of F . Our choices of signs for the endpoints ensure that for each
demand cycle C, its characteristic vector x = χC(d) satisfies constraint (5). Moreover, any linear
combination of these vectors is easily seen to satisfy (5), and the following converse holds.

Claim 9 Any x satisfying (5) is a linear combination of characteristic vectors of demand cycles.

We defer the proof of Claim 9 to Appendix C.
By Claim 9, we may change the variables in the optimization problem from x to instead have

one variable yd for each d ∈ D; the variables are thus related by x =
∑

d ydχ
C(d). In the bidirected

optimization problem, set ℓe = 0, ue = ce for each e ∈ E, and ℓd = 0, ud = +∞ for each d ∈ D.
Rewriting (6) in terms of the new variables gives precisely the constraints (1) and (2). In other
words, feasible integral flows x correspond bijectively to feasible integral solutions y for the WMCFT

9

r

Fig. 3. An all-ror multicommodity flow instance. The tree graph (V, E) is depicted using thick lines, and the demand
edges D are thin. Radial demand edges are dashed and root-using demand edges are solid. The root is r. An arrowhead
denotes a positive endpoint, while the remaining endpoints are negative; these signs correspond to the reduction in
the proof of Theorem 2.

instance. Setting πd = wd for d ∈ D and πe = 0 for e ∈ E, the objective function of (4) represents
the weight for y, completing the reduction.

As mentioned earlier, this bidirected flow problem can in turn be reduced to a b-matching
problem with a constant factor increase in the size of the problem. Using the strongly polynomial
b-matching algorithm of Anstee [3], the proof of Theorem 2 is complete. ⊓⊔

3.1 Polyhedral Results

The reduction used in the proof of Theorem 2 can also be used to derive the following result.

Theorem 10 The convex hull of all integral feasible solutions in an all-ror WMCFT problem has
the following description:

yd ≥ 0, ∀d ∈ D (8)
∑

e∈pd

yd ≤ ce, ∀e ∈ E (9)

∑

d∈D

yd⌊|pd ∩ F |/2⌋ ≤ ⌊c(F)/2⌋, ∀F ⊂ E (10)

We defer the proof of Theorem 10 to Appendix D. Interestingly, results of Garg et al. [15,
preliminary version] show that (8)–(10) is also integral in unit-capacity WMCFT. It is possible to
synthesize our Theorems 2 and 10 with corresponding results of [15] for the unit-capacity case, by
“gluing” all-ror instances at capacity-1 edges, but we omit these specialized results from the current
paper.

Caprara and Fischetti [6] gave a strongly polynomial-time algorithm to separate over the family
(10) of inequalities. The ubiquity of the polyhedral formulation (8)–(10) suggests that it might be
useful in designing a better approximation algorithm for WMCFT. One roadblock is that we do
not know how to perform uncrossing (see, e.g., [18]) for that LP.

10

4 Closing Remarks

For the problem of finding a k-edge connected subgraph with the smallest number of edges, it is
known [13, 14] that the best approximation ratio possible (if P 6= NP) is 1+Θ(1/k). We have proven
a similar phenomenon for WMCFT (in terms of µ) and these results rely on similar techniques,
notably iterated LP rounding. It would be nice to resolve the following outstanding question: for the
problem of finding a min-weight k-edge connected subgraph, does the best possible approximation
ratio decrease as k increases?

There is a close relation between WMCFT and its “demand” version where every flow variable is
restricted according to yd ∈ {0, rd} for some constants {rd}d∈D. E.g., combining IteratedSolver

and Cor. 3.5 of [7], we obtain a 1 + O(1/
√

µ) approximation for demand WMCFT where µ is the
ratio of the minimum capacity to the maximum demand. An interesting open question is whether
the O(dmax)-relaxed integrality gap of the demand analogue of P0 is 1, where dmax is the maximum
demand; we have shown that this holds for the unit-demand case, while Shepherd and Vetta [24]
showed it holds for general demands when G is a star. To prove that it holds for general demands
on a tree, or even general demands on a line, seems to require new ideas.

References

1. M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of the undirected edge-disjoint paths problem with
congestion. In Proc. 46th FOCS, pages 226–244, 2005.

2. M. Andrews and L. Zhang. Logarithmic hardness of the undirected edge-disjoint paths problem. J. ACM,
53(5):745–761, 2006. Preliminary version appeared in Proc. 37th STOC, pages 276–283, 2005.

3. R. P. Anstee. A polynomial algorithm for b-matchings: An alternative approach. Inf. Process. Lett., 24(3):153–157,
1987.

4. N. Bansal, R. Khandekar, and V. Nagarajan. Additive guarantees for degree bounded directed network design.
Technical Report RC24347, IBM, 2007.

5. G. Calinescu, A. Chakrabarti, H. J. Karloff, and Y. Rabani. Improved approximation algorithms for resource
allocation. In Proc. 9th IPCO, pages 401–414, 2002.

6. A. Caprara and M. Fischetti. {0, 1

2
}-Chvátal–Gomory cuts. Math. Program., 74(3):221–235, 1996.

7. C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommodity demand flow in a tree and packing integer
programs. ACM Trans. Algorithms, 3(3):27, 2007. Extended abstract appeared in Proc. 30th ICALP, pages
410–425, 2003.

8. J. Cheriyan, T. Jordán, and R. Ravi. On 2-coverings and 2-packings of laminar families. In European Symposium

on Algorithms, pages 510–520, 1999.
9. J. Edmonds and E. Johnson. Matching: A well-solved class of integer linear programs. In R. Guy, H. Hanani,

N. Sauer, and J. Schonheim, editors, Proceedings, Calgary International Conference on Combinatorial Structures

and their Applications, pages 82–92. Gordon and Breach, 1970.
10. T. Erlebach and K. Jansen. Conversion of coloring algorithms into maximum weight independent set algorithms.

In J. D. P. Rolim et al., editor, Proc. ICALP Satellite Workshops, pages 135–146, 2000.
11. T. Erlebach and K. Jansen. The maximum edge-disjoint paths problem in bidirected trees. SIAM J. Discrete

Math., 14(3):326–355, 2001. Preliminary version appeared as “Maximizing the Number of Connections in Optical
Tree Networks” in Proc. 9th ISAAC, pages 179–188, 1998.

12. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. SIAM

Journal on Computing, 5(4):691–703, 1976. Preliminary version appeared in Proc. 16th FOCS, pages 184–193,
1975.

13. H. N. Gabow and S. Gallagher. Iterated rounding algorithms for the smallest k-edge-connected spanning sub-
graph. In Proc. 19th SODA, pages 550–559, 2008.

14. H. N. Gabow, M. X. Goemans, Éva Tardos, and D. P. Williamson. Approximating the smallest k-edge connected
spanning subgraph by LP-rounding. In Proc. 16th SODA, pages 562–571, 2005.

15. N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for integral flow and multicut
in trees. Algorithmica, 18(1):3–20, May 1997. Preliminary version appeared in Proc. 20th ICALP, pages 64–75,
1993.

11

16. M. X. Goemans. Minimum bounded degree spanning trees. In Proc. 47th FOCS, pages 273–282, 2006.
17. I. B.-A. Hartman. Optimal k-colouring and k-nesting of intervals. In Proc. 4th Israel Symposium on Theory of

Computing and Systems, pages 207–220, 1992.
18. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica,

21(1):39–60, 2001. Preliminary version appeared in Proc. 39th FOCS, pages 448–457, 1998.
19. V. Kann. On the Approximability of NP-complete Optimization Problems. PhD thesis, Royal Institute of Tech-

nology Stockholm, 1992.
20. L. C. Lau, J. S. Naor, M. R. Salavatipour, and M. Singh. Survivable network design with degree or order

constraints. In Proc. 39th STOC, pages 651–660, 2007.
21. T. Nguyen. On the disjoint paths problem. Oper. Res. Lett., 35(1):10–16, 2007.
22. P. Raghavan and C. Thompson. Randomized rounding: a technique for provably good algorithms and algorithmic

proofs. Combinatorica, 7:365–374, 1987.
23. A. Schrijver. Combinatorial optimization. Springer, New York, 2003.
24. F. B. Shepherd and A. Vetta. The Demand-Matching Problem. Mathematics of Operations Research, 32(3):563–

578, 2007. Preliminary version appeared in Proc. 9th IPCO, pages 457-474, 2002.
25. M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees to within one of optimal. In

Proc. 39th STOC, pages 661–670, 2007.

A Hardness of WMCFT with Constant Lower Bounds

Theorem 11 For some ǫ > 0, for all integers µ ≥ 2, it is NP-hard to approximate WMCFT to a
factor of less than 1+ ǫ/µ, even when restricted to instances where all capacities are at least µ, and
all weights are unit.

Proof. We extend Garg et al.’s construction [15, Thm. 4.2]. Their reduction is from 3-bounded
maximum three-dimensional matching (MAX 3DM–3); an instance consists of three disjoint sets
X,Y,Z of size n and a family of triples S ⊂ X × Y × Z such that each element is in at most 3
triples. The objective is to find a maximum-size disjoint set of triples from S. If |S| < n elements
appearing in no triples can be discarded, so WOLOG |S| ≥ n.

Kann [19] showed that MAX 3DM–3 is MAX SNP-complete, hence by the PCP theorem, for
some δ > 0 it is NP-hard to approximate it within a ratio of 1 + δ. A greedy argument easily
shows the optimal value of MAX 3DM–3 is always at least |S|/7. Hence it is NP-hard to additively
approximate MAX 3DM–3 within |S|δ/7.

The construction given in [15] is an instance of unit-weight WMCFT on a tree which has optimal
value t + |S| where t is the maximum number of disjoint triples in S. Let (V,E) denote the tree
obtained from this construction; it satisfies |E| = 3(|S|+n). To obtain a lower bound µ on capacity,
we perform the following for each edge uv ∈ E: (1) add a new leaf u′ and a new edge uu′ to the
tree; (2) add a new unit-weight demand edge u′v to D; (3) increase the capacity of uv by µ and
set the capacity of uu′ to be µ. We illustrate the overall modification in Figure 4.

An easy alteration argument shows that there exists an optimal solution y to the modified
WMCFT problem such that yd = µ for each new demand edge d. It then follows that its optimal
value is t+ |S|+µ|E|. Furthermore, since t+ |S|+µ|E| ≤ (6µ+2)|S|, approximating the WMCFT

instance to a ratio less than 1 + |S|δ/7
(6µ+2)|S| = 1 + Θ(1/µ) is NP-hard. ⊓⊔

B Polynomial Running Time of Packing Conversion

Cheriyan et al.’s algorithm applies to a multiset P of demand edges, and has running time polyno-
mial in |P|. Directly applying their algorithm to the multiset containing yd copies of each demand

12

· · ·

· · ·

2 1

2

1 1

· · ·

· · ·

µ + 2 µ + 1

µ + 2

µ + 1 µ + 1

µ µ

µ

µ µ

Fig. 4. Left: a portion of the capacitated tree used in the hardness construction of [15]. Demand edges are not shown.
Right: the modified capacitated tree (thick) used in the proof of Theorem 11, and the new demand edges (thin). The
old demand edges are still not shown, but present.

edge d would give us a correct answer y′, but the running time would be pseudo-polynomial in the
length of the WMCFT instance’s description, i.e., it would run in poly(

∑
d yd) = poly(|E|maxe ce)

time, whereas we can only allow polylogarithmic dependence on maxe ce.
To modify this for our purposes, define ỹd = ⌊yd/2⌋ for each demand edge d and let y = y− 2ỹ,

so y is a 0-1 vector. Define, for each edge e, c′e := ce −
∑

d:e∈pd
ỹd and notice that y violates the

capacities c′ by at most a factor of 2. Apply the algorithm of Theorem 5 to y, producing a solution
y′ which is feasible for c′ with w ·y′ ≥ w ·y/3. This application is polynomial-time since

∑
d yd ≤ |D|.

Define y′ = y′ + ỹ; then it is immediate that y′ is feasible for capacities c. Furthermore,

w · y′ = w · (y′ + ỹ) ≥ 1

3
w · y + w · ỹ ≥ 1

3
w · (y + 2ỹ) = (w · y)/3,

as needed.

C Proof of Claim 9

Let x′ = x−
∑

d xdχ
C(d), and observe that x′ also satisfies (5). Moreover, as each particular demand

edge d∗ occurs only in one demand cycle, namely C(d∗), we have x′
d∗ = xd∗ −

∑
d xdχ

C(d)
d∗ =

xd∗ − xd∗ = 0 for each d∗ ∈ D. In other words, x′ vanishes on D.
Now consider any leaf v 6= r of G and its incident edge uv ∈ E. Since x′ satisfies (5) at

v and x′ is zero on every edge incident to v except possibly uv, we deduce that xuv = 0. By
induction we can repeat this argument to show that x′ also vanishes on all of E, so x′ = 0. Then
x = x′ +

∑
d xdχ

C(d) =
∑

d xdχ
C(d), which proves Claim 9.

D Proof of Theorem 10

It is obvious that constraints (8) and (9) are valid. To see that the constraint (10) is valid, notice
that it can be obtained as a Chvátal-Gomory cut: give coefficient 1/2 to each constraint (9) for

13

e ∈ F . This establishes necessity, and the rest of the proof will establish sufficiency of the constraints
(8)–(10).

Our starting point is the following polyhedral characterization, which appears as Cor. 36.3a in
Schrijver [23], and deals with the special case of bidirected flow when a = b and ℓ = 0.

Proposition 12 Let σ denote the signs of a bidirected graph. The convex hull of the integer solu-
tions to

∀e ∈ E : 0 ≤ xe ≤ ue ∀v ∈ V :
∑

e∋v

σv,exe = bv (11)

(i.e. the convex hull of all feasible integral bidirected flows) is determined by Equation (11) together
with the constraints

x(δ(U)\F) − x(F) ≥ 1 − u(F) (12)

where U ⊆ V and F ⊆ δ(U) with b(U) + u(F) odd.

In order to apply Proposition 12 to the construction in the proof of Theorem 2, we set ar = br = 0
and add a loop at r with both of its endpoints negative. Further, we change the definition of C(d)
to include this loop whenever d is a radial demand edge; then it is not hard to show that, just as
before, feasible bidirected flows x correspond bijectively to feasible multicommodity flows y.

Now apply Proposition 12 to the construction. Recall that the edge set of the bidirected graph is
D∪E. Since ud = +∞ for d ∈ D, the constraint (12) is vacuously true unless F ⊂ E. Furthermore,
recall that b is the all-zero vector and ue = ce for e ∈ E. Rearranging, we obtain the following
description of the convex hull of all integral feasible bidirected flows:

∀e ∈ E : 0 ≤ xe ≤ ce ∀d ∈ D : 0 ≤ xd ∀v ∈ V :
∑

e∋v

σv,exe = 0 and

x(F) − x(δ(U))/2 ≤ (c(F) − 1)/2 for U ⊆ V, F ⊆ E ∩ δ(U), c(F) odd

Rewriting in terms of the y variables, and collecting like terms, yields

∀d ∈ D : 0 ≤ yd ∀e ∈ E :
∑

e∈pd

yd ≤ ce and (13)

∑

d

yd(|pd ∩ F | − |C(d) ∩ δ(U)|/2) ≤ (c(F) − 1)/2 for U ⊆ V, F ⊆ E ∩ δ(U), c(F) odd (14)

For any fixed choice of F ⊆ E, let U∗
F ⊆ V be the unique set such that δ(U∗

F) ∩ E = F and
r 6∈ U . We claim that for this F , constraint (14) is tightest for U = U∗

F . To see this, note first
that C(d) ∩ δ(U) is always even (since in traversing the cycle C(d), we enter U as many times as
we leave); second, that |C(d) ∩ δ(U∗

F)|/2 = ⌈|pd ∩ F |/2⌉; third, that for any other U ′ such that
F ⊆ δ(U ′), |C(d) ∩ δ(U ′)|/2 is an integer greater than or equal to |pd ∩ F |/2.

Hence, there is no loss of generality in assuming U = U∗
F in constraint (14). Rewriting, it

becomes ∑

d

yd(|pd ∩ F | − ⌈|pd ∩ F |/2⌉) ≤ (c(F) − 1)/2 for c(F) odd;

finally, since t = ⌊t/2⌋ + ⌈t/2⌉ for all integers t, the theorem follows.

14

