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Abstract
We present a classical approximation algorithm for the MAX-2-Local Hamiltonian problem. This is
a maximization version of the QMA-complete 2-Local Hamiltonian problem in quantum computing,
with the additional assumption that each local term is positive semidefinite. The MAX-2-Local
Hamiltonian problem generalizes NP-hard constraint satisfaction problems, and our results may be
viewed as generalizations of approximation approaches for the MAX-2-CSP problem. We work in
the product state space and extend the framework of Goemans and Williamson for approximating
MAX-2-CSPs. The key difference is that in the product state setting, a solution consists of a set
of normalized 3-dimensional vectors rather than boolean numbers, and we leverage approximation
results for rank-constrained Grothendieck inequalities. For MAX-2-Local Hamiltonian we achieve an
approximation ratio of 0.328. This is the first example of an approximation algorithm beating the
random quantum assignment ratio of 0.25 by a constant factor.
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1 Introduction

The k-Local Hamiltonian problem is the most studied QMA-complete problem in quantum
computing [19] and generalizes classical constraint satisfaction problems (CSPs). It is
physically motivated, asking about the ground state energy of a system specified by its
Hamiltonian, or equivalently the minimum eigenvalue of an exponentially large Hermitian
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matrix. Even though the matrix is exponentially large in the number of qubits, it can be
succinctly described as a sum of matrices that are each a tensor product of a 2k×2k Hermitian
matrix and the 2n−k × 2n−k identity matrix, where n is the size of the whole matrix, and k
is some constant given by a problem instance (called locality). Note that one only needs to
describe the 2k × 2k matrices to describe the whole problem. A precise definition will be
given later. There are many variations depending on the locality, the number of levels each
particle has (instead of 2 for the qubit case above), and other assumptions that can be made
on the Hamiltonian. The class QMA has also been well-studied, and a large set of problems
has been shown to be QMA-complete [6].

There has been much less progress in finding approximation algorithms for these problems.
One difference arising in the quantum case is that classical algorithms cannot efficiently
represent arbitrary solutions, which in general are entangled quantum states and thus reside
in an exponentially large space (2n dimensional). One approach to circumvent this problem
is to only consider product state solutions, which are a subset of quantum states that exhibit
no entanglement and admit efficient classical descriptions. Bansal, Bravyi, and Terhal [5]
proved that a polynomial time approximation scheme (PTAS) (a polynomial-time algorithm
that offers an arbitrarily good approximation at the expense of increase in run time) exists
for Quantum Ising Spin Glass when assuming the underlying graph describing the interaction
of the qubits is planar with bounded degree. Brandão and Harrow [7] analyze the D-regular
case and give an additive approximation algorithm.

Another issue in the design of approximation algorithms is ensuring that problems
have well-defined approximations. For general Hamiltonians, which are Hermitian, the
spectrum can include positive and negative numbers, so it is difficult to define a meaningful
approximation ratio. Gharibian and Kempe [12] defined the MAX-k-Local Hamiltonian
problem and analyze the dense case. Their definition requires the k-local terms of the
Hamiltonian to be positive semidefinite, so that meaningful approximations exist. This case
is still QMA-hard and includes the classical constraint satisfaction problem, MAX-k-CSP as
a special case.

The Max-2-Local Hamiltonian problem

In this paper we give a randomized classical approximation algorithm for the MAX-2-Local
Hamiltonian (MAX-2-LH) problem on qubits. MAX-2-LH is QMA-hard, so approximation
algorithms are a natural solution strategy. The problem is NP-hard because it includes
MAX-2-CSP as a special case. To see that it is QMA-hard requires relating it to the decision
(promise) k-Local Hamiltonian problem, defined on n qubits. In this problem, 2k × 2k
Hermitian matrices HS are given for each subset S ⊆ [n] of size k, together with real numbers
a and b with b − a ≥ 1/poly(n). The HS are called k-local terms and may be viewed as
quantum generalizations of classical boolean constraints on k variables. The promise on
the input is that either some eigenvalue of the Hamiltonian H :=

∑
S HS ⊗ I[n]\S is less

than a, or all eigenvalues are greater than b (the notation HS ⊗ I[n]\S signifies that HS

acts on the k qubits of S and is tensored with identity on the other n − k qubits). The
QMA witness for the yes case is a quantum state that is an eigenstate with eigenvalue less
that a, and a quantum algorithm can verify in polynomial time whether its eigenvalue is
less than a or larger by 1/poly(n). The QMA-hard 2-Local Hamiltonian problem may be
reduced to the optimization problem, MAX-2-LH by negating H (since MAX-2-LH is a
maximization problem) and adding identity terms, if necessary, to ensure that each 2-local
term is positive semidefinite. MAX-2-LH also generalizes the NP-hard MAX-2-CSP problem,
which is illustrated in Section 2.2.
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For MAX-2-LH, we assume an edge set E over the vertex set [n] and a set of 4 × 4
positive semidefinite Hermitian matrices {Hpq}(p,q)∈E are given. The goal is to compute the
maximum eigenvector of H :=

∑
(p,q)∈E Hpq ⊗ I[n]\{p,q}. The Hermitian matrix H acts on n

qubits, and each term Hpq acts on the two qubits p, q and as the identity on the remaining
n− 2 qubits. More precisely, Hpq : Hp ⊗Hq → Hp ⊗Hq, where for all p ∈ [n], Hp is the 2
dimensional complex Hilbert space, representing the qubit p, and I[n]\{p,q} is the identity
matrix on

⊗
i∈[n]\{p,q}Hi. The input matrices {Hpq}(p,q)∈E therefore implicitly describe the

2n × 2n Hermitian matrix H, whose maximum eigenvector we wish to compute.

Related work

Other generalizations of classical problems to physically motivated Local Hamiltonian prob-
lems have been studied, but the exact relationship to well-studied classical problems such
as MAX-2-SAT, MAX-CUT, and MAX-2-AND depends on which variant of the Local
Hamiltonian problem is being considered. Gharibian and Parekh [14] study a maximization
problem on 2-Local Hamiltonians for the Heisenberg model, which is a physically motivated
generalization of MAX-CUT. These have the form H =

∑
(p,q)∈E wpqHpq for wpq ≥ 0, where

Hpq = I − αXpXq − βYpYq − γZpZq, for α, β, γ ∈ {0, 1}, where Xp, Yp, Zp are the Pauli
matrices on qubit p (e.g., Xp is a 2n × 2n matrix formed by taking the 2× 2 Pauli X matrix
on qubit p tensored with identity on all the other n− 1 qubits). They get approximation
ratios 0.498 (when α+β+γ = 3), 0.649 (when α+β+γ = 2), or 0.878 (when α+β+γ = 1).
Furthermore, they show that their ratios are almost tight in the product state space. In
particular they give a simple instance on which a product state cannot provide an approxim-
ation ratio better than 0.5, for the α+ β + γ = 3 case. This case of their problem is a special
case of MAX-2-LH, hence 0.5 is also an upper bound on the best attainable approximation
ratio for MAX-2-LH using product states. Anshu, Gosset, and Morenz [2] have very recently
demonstrated that it is possible for a classical algorithm to provide an approximation ratio
better than 0.5 for this problem, by outputting descriptions of relatively simple entangled
states.

Bravyi, Gosset, König, and Temme [8] consider traceless 2-local Hamiltonians. This
generalizes the Maximum Quadratic Programming problem (MAX-QP) where the diagonal
entries are zero [10, 3]. In addition to generalizing MAX-QP, it also captures a variety of
physical quantum models. They give a randomized classical algorithm that outputs a product
state with expected energy OPT /O(logn), where OPT is the maximum eigenvalue of the
input Hamiltonian.

Our results

In this paper we achieve an approximation ratio of 0.328 for MAX-2-LH. The approximation
algorithm for MAX-2-LH that picks a random assignment (i.e., the fully mixed quantum
state) achieves ratio 0.25. Ours is the first example of an approximation algorithm for this
problem that beats the trivial bound by a constant. It is also possible to achieve a ratio of
0.25 + 1/O(log(n)) by taking the input instance, shifting each term Hi so that it is traceless,
and using the result in [8]. In MAX-2-LH each local term, acting on 2 qubits, is a rank 1
projector. In the special case when each local term is a rank 1 projector that is a product of
two rank 1 projectors, one on each qubit, we get a better ratio of 0.40. This special case is
detailed in Section 4. It is QMA-hard to find the maximum eigenvalue of this special type of
Hamiltonian by Theorem 7 in [11].

APPROX/RANDOM 2020
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In terms of techniques, we follow the framework that was first introduced by Goemans
and Williamson. We first formulate a semidefinite program (SDP) whose optimal objective
value provides an upper bound on the maximum energy of a given 2-local Hamiltonian. We
can solve the SDP to arbitrary precision in polynomial time. Then we randomly round the
solution, which resides in a larger space, down to the original solution space. Analyzing the
randomized rounding is considerably more complicated than in the classical setting, because
we need to round the solutions to a continuous 3-dimensional space, whereas the solution
space is the boolean space for classical cases. We build upon a rounding procedure analyzed
for generalizing the positive-semidefinite Grothendieck problem to a rank-constrained setting,
by Briët, de Oliveira Filho, and Vallentin [9].

Even with this rounding procedure, obtaining a multiplicative bound that outperforms a
random assignment for MAX-2-LH is a nontrivial task. In particular, our analysis takes the
1-local part of the input Hamiltonian explicitly into account. Ours is the first work of its kind
to do so. Bravyi, Gosset, König, and Temme [8] showed that in the context of their problem,
1-local terms could be ignored without loss of generality, while Gharibian and Parekh [14]
considered a problem without 1-local terms.

It is natural to consider SDP relaxations for our problem, because most approximation
algorithms for classical MAX-2-CSP employ SDP rounding [15, 23, 22, 20]. Our SDP
formulation is similar to that of [14, 8]; however, we must use additional constraints to handle
the 1-local part. We also consider a different SDP formulation in order to get an improved
approximation ratio in the special case where each local term is a product projector. The
alternative formulation is described in Section 4. An advantage of the first SDP formulation is
that the optimal value of the program provides an upper bound on OPT itself (the maximum
eigenvalue of the Hamiltonian), whereas the optimal value of the alternative program gives
an upper bound on OPTprod, the objective value achieved by the best product state.

Open questions

There are several open questions. Is it possible to close the gap between 0.328 that we achieve
and the 0.5 upper bound for product states? Is it possible to beat the uniformly random
assignment when each term is a rank 3 projector, which is a quantum generalization of the
classical Max 2-SAT problem? Is it possible to use more general states than product states,
for example, as in the recent developments of Anshu, Gosset, and Morenz [2]? Does the
approximation algorithm shed any light on the quantum PCP theorem?

2 Background

2.1 Approximating quantum problems
We first define the MAX-2-Local Hamiltonian problem.

I Definition 1 (MAX-2LH). An instance is given as a set of Hamiltonians {Hpq : (p, q) ∈ E},
for some edge set E ⊆ [n]× [n], where Hpq ⊗ I[n]\{p,q} is positive semidefinite and operates
non-trivially on qubits p and q. Given such a list of Hamiltonians on 2 qubits, the goal of the
problem is to find the largest eigenvalue of H =

∑
(p,q)∈E Hpq ⊗ I[n]\{p,q}, which we denote

as OPT.
To simplify notation we will write H =

∑
pqHpq, where terms Hpq for (p, q) 6∈ E are the

zero matrix (so have rank 0). Also, let OPTprod denote the maximum energy achievable over
the set of product states, i.e., OPTprod = max|φ1〉···|φn〉〈φ1| · · · 〈φn|H|φ1〉 · · · |φn〉.
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Since the 2-Local Hamiltonian problem can be reduced to the MAX-2-Local Hamiltonian
problem, this problem is QMA-hard. So instead, we turn to approximating OPT with a
multiplicative error. The goal of this paper is to beat the trivial approximation for the
maximum eigenvalue of 2-local Hamiltonians presented in the following theorem.

I Theorem 2. Given a 2-local Hamiltonian H =
∑
pqHpq ⊗ I[n]\{p,q} with local terms that

are rank r projectors, Hpq (r ∈ {1, 2, 3}), if the maximum eigenvalue (energy) of H is OPT,
then the uniformly random product state achieves energy at least r/4 ·OPT .

Proof. Consider the contribution of the local term Hpq to the energy. Since we are assigning
the uniformly random product state, the qubit p, q is assigned

ρpq :=
(

1/2 0
0 1/2

)
⊗
(

1/2 0
0 1/2

)
= I/4

jointly. The energy contribution of Hpq is then Tr(Hpqρpq) = Tr(Hpq)/4 = r/4, because Hpq

is a rank r projector. Therefore if ρn is the uniformly random product state on n qubits,
the total energy is Tr(Hρn) = rm/4 where m is the number of local terms. We know that
m ≥ OPT. So Tr(Hρn) ≥ r/4 ·OPT . J

Harrow and Montanaro [16] consider approximation of the minimum and maximum
eigenvalue of local Hamiltonians where each qubit can appear in at most D local terms. They
give an algorithm with approximation ratio c+ Ω(1/

√
D), where c is the ratio achieved by

uniformly random assignment. More related to the problem we consider, Gharibian and
Kempe [12] consider approximating the maximum eigenvalue of a k-local Hamiltonian with
positive semidefinite local terms.

I Theorem 3 ([12]). For a k-local Hamiltonian H on n, d-dimensional qudits with positive
semidefinite local terms and maximum eigenvalue (energy) OPT, there exists a product state
assignment with energy of OPT /dk−1.

We are interested in the case of (d, k) = (2, 2) in this paper. In this case, the above theorem
implies there exists a product state with energy OPT /2 and this means OPTprod ≥ OPT /2;
however, finding such a product state is NP-hard in general. They also give an approximation
algorithm achieving a constant approximation ratio for dense instances.

I Theorem 4 ([12]). For any k-local Hamiltonian H on n qubits, there exists a deterministic
poly-time algorithm outputting a product state achieving 〈ψ|H|ψ〉 > OPTprod−εnk. OPTprod
is the highest energy that can be achieved by a product state.

In the case of k = 2, this implies a product state with energy OPTprod−εn2 can be efficiently
found. If the constraint graph is dense, combining the two gives a (1/2− ε′)-approximation
algorithm. With a dense constraint graph, we know that OPTprod = Θ(n2) (by assigning a
random product state). So OPTprod−εn2 = OPTprod−cεOPTprod = (1− cε) OPTprod, for
some constant c. By Theorem 3, we know that this value is at least (1/2− cε/2) OPT.

Brandão and Harrow’s result [7] also says that product states do better on regular
constraint graphs as the degree increases.

I Theorem 5 ([7]). Suppose a 2-local Hamiltonian H on qudits has non-trivial terms on
a D-regular graph. For all edges (p, q) on the graph, suppose the local term Hpq satisfies
‖Hpq‖ ≤ 1. Then there exists a product state |ψ〉 such that 〈ψ|H|ψ〉 ≥ OPT−12nD2 (d

2 ln d
D )1/3,

where OPT is the largest eigenvalue of H.

The above theorems imply that there exists a product state that achieves approximation
ratio of 1− 12(d

2 ln d
D )1/3 when the constraint graph is D-regular.

APPROX/RANDOM 2020
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More recent and closely related work is that of Gharibian and Parekh [14] and Bravyi,
Gosset, König, and Temme [8]. These works and our work all aim to optimize 2-local
Hamiltonians in the product state space, and they all use SDP to do so. The work [14]
considers a specialization of Max-2-LH; however, a key difference is that their main target
Hamiltonian is more restricted and physically motivated, a maximization version of the
quantum Heisenberg model. The special case they consider is qualitatively simpler in some
sense, as their Hamiltonian does not have any 1-local terms, which present an additional
complication in our work. They also consider additional Hamiltonians that do not have
PSD local terms, which are not special cases of MAX-2-LH. Another difference is in the
SDP relaxations employed. We must use additional constraints yielding a strengthened SDP
relaxation to obtain our results. They get the following results.

I Theorem 6 ([14]). Consider a local Hamiltonian H =
∑

(p,q)∈E wpqHpq for wpq ≥ 0, where
Hpq = I −αXpXq − βYpYq − γZpZq, for α, β, γ ∈ {0, 1}. There exists a randomized classical
approximation algorithm with approximation ratio 0.498 (when α+ β + γ = 3), 0.649 (when
α+ β + γ = 2), or 0.878 (when α+ β + γ = 1).

The α+ β + γ = 3 case of the above problem is when Hpq is a rank 1 projector onto the Bell
state |Ψ−〉 = |01〉 − |10〉, on qubits p and q. Thus this case is an instance of MAX-2-LH.

The work [8] uses similar techniques for a slightly different problem. They consider the
problem of approximating the maximum eigenvalue of traceless 2-local Hamiltonians on n
qubits. They give a randomized classical approximation algorithm that outputs a product
state with expected energy OPT /O(logn) where OPT is the maximum eigenvalue of the
input Hamiltonian. They use the same SDP relaxation as [14] for the maximum eigenvalue,
but they use a different rounding technique from [14] or this work; as with [14], being able
to ignore 1-local terms simplifies their algorithm and analysis relative to this work.

Another related work is by Bansal, Bravyi, and Terhal, where they prove that a PTAS
(an algorithm that runs in polynomial time in problem size and 1/ε where ε is an arbitrarily
small approximation ratio) exists [5] for Quantum Ising Spin Glass defined over a planar
interaction graph with bounded degree, where the goal is to find the minimum eigenvalue
of Hamiltonians of form H =

∑
(u,v)∈E cuvLuv +

∑
u Lu, where Luv is quadratic in Pauli

matrices and Lu is linear.
There are limited results on the hardness of approximation of quantum problems. Ghari-

bian and Kempe introduce a quantum version of Σp2 called cq-Σ2 [13]. They prove that QSSC
and QIRR, defined in the paper, are cq-Σ2-hard to approximate to certain ratios. Moreover,
they also show that it is QCMA-hard to approximate Quantum Monotone Minimum Satisfy-
ing Assignment, defined in their paper, to approximation ratio N1−ε for all ε > 0, where N
is the size of instance.

2.2 Reducing Max-2-CSP to Max-2-LH
MAX-2-CSP is reduced to MAX-2-Local Hamiltonian as follows. Suppose we are given
a MAX-2-CSP instance on n boolean variables x1, x2, . . . , xn ∈ {0, 1}, a set of edges E
between the xi’s, and functions fij : {0, 1}2 → {0, 1} on (xi, xj) for (i, j) ∈ E. The
question is to compute the quantity OPTCSP = maxx1,...,xn

∑
(i,j)∈E fij(xi, xj). We can

reduce this instance to a MAX-2-LH instance on n qubits q1, q2, . . . , qn with project-
ors Pij :=

∑
(xi,xj)∈Supp(fij) |xixj〉〈xixj | on qubit i, j for (i, j) ∈ E, where Supp(fij) =

{(xi, xj) | fij(xi, xj) = 1}. To see that this is a correct reduction, consider an optimizer
|φ〉 =

∑
x∈{0,1}n cx|x〉 to the MAX-2-LH instance. The energy of |φ〉 is 〈φ|

∑
(i,j)∈E Pij |φ〉 =∑

x∈{0,1}n |cx|2〈x|
∑

(i,j)∈E Pij |x〉. Measuring |φ〉 in the computational basis and using it as
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an assignment for the original instance, we satisfy
∑
x∈{0,1}n |cx|2

∑
(i,j)∈E fij(xi, xj) con-

straints in expectation, which coincides with the energy of |φ〉. So MAX-2-Local Hamiltonian
on qubits is NP-hard. Then MAX-k-Local Hamiltonian with k > 2 on qudits is also NP-hard
because MAX-2-LH on qubits is a special case of MAX-k-LH on qudits, when each projector
acts non-trivially on 2 locations within an embedded 2 dimensional space.

2.3 Approximating 2-CSPs using SDP
SDP has been a major tool for approximating 2-CSP problems since Goemans and Williamson
used semidefinite programming to obtain a 0.878-approximation for MAX-CUT and MAX-2-
SAT, as well as a 0.796-approximation for a MAX-DICUT [15].

There had been gradual improvements in the approximation ratio [23, 22], and finally
[20] obtained the best approximation ratios to date, 0.94016 for MAX-2-SAT and 0.87401 for
MAX-DICUT. All of the papers mentioned above employ SDP rounding techniques.

On the other hand, [17] showed that the approximation ratio 0.878 for MAX-CUT is
tight and the approximation ratio for MAX-DICUT is upper bounded by 0.878, assuming
that the Unique Game Conjecture (UGC) is true. Austrin proved that the approximation
ratio 0.94016 is tight for MAX-2-SAT and the approximation ratio for MAX-2-AND is upper
bounded by 0.87435, assuming the UGC [4]. More details about CSP approximation can be
found in a recent survey by Makarychev and Makarychev [21].

2.4 Lemmas on randomized rounding
We use the following lemmas without proof. The inequalities are special cases of more general
“Grothendieck inequalities.” Grothendieck inequalities have begun playing an important role
in theoretical computer science with a variety of applications. For more details see a survey
by Khot and Naor [18].

The first two lemmas below are given by Goemans and Williamson with which they prove
approximation ratios for their MAX-CUT and MAX-2SAT algorithms respectively, namely,
Theorem 3.3 and Lemma 7.3.2 in [15].

I Lemma 7 ([15]). Let u, v ∈ SN be unit vectors in RN+1 for N ≥ 2, and let x =
sgn(u · r), y = sgn(v · r) for a uniformly random vector r ∈ SN . Then

Er[1± xy] ≥ α1(1± u · v),

where α1 = 2
π min0<θ<π

θ
1−cos θ = 0.878 . . ..

I Lemma 8 ([15]). Let u, v, w ∈ SN be unit vectors in RN+1 for N ≥ 2, and let x =
sgn(u · r), y = sgn(v · r), z = sgn(w · r), for a uniformly random vector r ∈ SN . Then

Er[1± xy ± xz + yz] ≥ α2(1± u · v ± u · w + v · w),

where α2 = min0<θ<arccos (−1/3)
2
π

2π−3θ
1+3 cos θ = 0.796 . . ..

We will also use the following lemma, obtained by Briët, de Oliveira Filho, and Vallentin [9]
in considering a rank-constrained version of the Grothendieck problem, to bound randomized
rounding for positive semidefinite matrices.

APPROX/RANDOM 2020
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I Lemma 9 ([9]). Let A be a m×m real-valued positive semidefinite matrix and u1, . . . , um
be unit vectors in SN for an integer N ≥ m. For all 1 ≤ i ≤ m, let xi = sgn(r · ui) for a
uniformly random vector r ∈ SN . Then

E

 ∑
1≤i,j≤m

Aijxixj

 ≥ m

π

(
Γ(m/2)

Γ((m+ 1)/2)

)2 ∑
1≤i,j≤m

Aijui · uj .

The coefficient m
π

( Γ(m/2)
Γ((m+1)/2)

)2 is asymptotically 2/π + Θ(1/m). We will use the lemma for

m = 6, which has associated constant α7 := 6
π

(
Γ(3)

Γ(3.5)

)2
= 6

π

(
2

15
√
π/8

)2
= 0.691 · · · .

Since Lemma 9 is not explicitly stated in the form of a theorem in [9], we give a brief
description about how to piece the statements in [9] together. This lemma follows from the
analysis in [9], where they give an approximation algorithm for the Grothendieck problem. In
particular, Lemma 1 and the argument surrounding Equation (3) are used as follows. Using
their notation, let E1(t) = 2

π arcsin t and let Ẽ1(t) = 2
π arcsin t− 2

π
t

γ(m) . It turns out that the
functions only depend on the inner product between two vectors, so E1(ui, uj) means E1(t),
where t = ui · uj . Lemma 1 states that Ẽ1(t) is of positive type for Sm−1. This means that
for any vectors u1, . . . , um ∈ Sm−1, the matrix

(
Ẽ1(ui, uj)

)
1≤i,j≤m

is positive semidefinite.

Since A is also positive semidefinite, it holds that
∑m
i,j=1Aij

(
2
π arcsin ui · uj − 2

π
ui·uj

γ(m)

)
=∑m

i,j=1AijẼ1(ui, uj) ≥ 0. Therefore
∑
ij Aij

2
π arcsin ui · uj ≥

∑
ij Aij

2
π
ui·uj

γ(m) . Finally, use
the fact that E [sgn(r · ui) sgn(r · uj)] = 2

π arcsin ui · uj , and the fact that 2
π

1
γ(m) is equal to

the factor given in the lemma above, as in Theorem 2 in [9].

2.5 Notation
I Definition 10 (Pauli matrices). We denote the Pauli matrices on a qubit as W0 := I =(

1 0
0 1

)
, W1 := X =

(
0 1
1 0

)
, W2 := Y =

(
0 −i
i 0

)
, and W3 := Z =

(
1 0
0 −1

)
.

On n qubits, we write Wpi := Wi ⊗ I[n]\{p}, where Wi is on the qubit p, and I[n]\{p} is the
identity on the rest of the qubits.

3 The algorithm and analysis

The setup

A 2-local Hamiltonian is given as a set of Hamiltonians {Hpq : (p, q) ∈ E}, for some edge
set E ⊆ [n]× [n], where Hpq operates on qubits p and q. This means Hpq is a 4× 4 matrix
on the Hilbert space Hp ⊗Hq that represents the joint space of qubits p, q. Given such a
list of Hamiltonians on 2 qubits, the goal is to approximate the maximum eigenvalue of
H :=

∑
(p,q)∈E Hpq ⊗ I[n]\{p,q}. In this paper we assume each term Hpq is a PSD matrix. We

will decompose Hpq using its eigenvectors Hpq =
∑4
t=1 wpq,t|γpq,t〉〈γpq,t|, where wpq,i ≥ 0 for

all p, q, t.
Let OPT denote the maximum eigenvalue of H over quantum states. Stated in terms

of energy, OPT = max|φ〉〈φ|H|φ〉. We seek to produce an approximately optimal state;
however, since our approximation algorithms are classical polynomial-time algorithms, we
output an efficient representation of such a state. Our approach is to formulate an SDP that
upper-bounds the maximum energy of the given Hamiltonian. We then randomly round the
solution vectors of the SDP to real numbers to get a product quantum state, admitting a
polynomial-size representation, with a relatively high energy.
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A semidefinite program relaxation

We start with an SDP relaxation that gives an upper bound on the optimal energy. By
“relaxation”, we mean an SDP for which each quantum state generates a feasible solution,
with objective function value matching its energy. This way, we know that the value of the
SDP is at least the highest energy possible by a physical state.

For each pair of qubits (p, q) ∈ E (E consists of ordered pairs pq with p < q), we have a
local Hamiltonian Hpq =

∑4
t=1 wpq,t|γpq,t〉〈γpq,t|. We denote the Pauli decomposition of the

local terms Cpqij = Tr(Hpq(Wi ⊗Wj))/4. Note that the matrix Cpq = (Cpqij)ij is real for
all (p, q) ∈ E, since tensor products of Pauli matrices form a real-coefficient basis for the
Hermitian matrices. Consider the SDP:

Maximize
∑

(p,q)∈E

3∑
i,j=0

Cpqijvpi · vqj (S1)

subject to:
||v0|| = 1
||vpi|| = 1, ∀p, i
v0 · vp0 = 1, ∀p
vpi · vpj = 0, ∀p, i, j > 0 : i 6= j

v0, vpi ∈ RN , ∀p, i
3∑

i,j=0
Cpqijvpi · vqj ≤

4∑
t=1

wpq,t, ∀(p, q) ∈ E.

and N can be taken to be the total number of vectors, v0 and the vpi in the program, which is
4n+1. The motivation for this relaxation is that, for any quantum state |φ〉, we may construct
additional complex unit vectors by applying tensor products of Pauli matrices to |φ〉. In
particular, setting v0 := |φ〉, and vpi := Wpi|φ〉, for all p and i, yields a solution that is “almost”
feasible for the above SDP. The first three constraints are satisfied, noting thatWp0 = W0 = I

for all p. For the fourth constraint, we have that vpi · vpj = 〈φ|WpiWpj |φ〉 = −〈φ|WpjWpi|φ〉,
since distinct nontrivial Pauli matrices anticommute. This implies that Re(vpi · vpj) = 0.
Indeed, we obtain a true solution to the SDP by modifying the vectors so that the imaginary
part of their inner products is discarded. This is formalized in the claim below.

I Remark 11. The complex vectors vpi, as constructed above from |φ〉, suggest a complex
SDP relaxation; however, the real version, (S1) is simpler and equivalent in terms of optimal
objective value. The relationship vpi · vqj = 〈φ|WpiWqj |φ〉 connects 2-moments of the state
|φ〉 to SDP relaxations. Considering higher-order moments leads to larger but stronger SDP
relaxations, and considering n-moments leads to an exact SDP formulation of exponential
size. Restricting the moments considered to products over only Wp3 = Zp for different p
yields an SDP hierarchy equivalent to the celebrated classical Lasserre hierarchy.

B Claim 12. This SDP is a relaxation, i.e., there is a mapping from pure quantum states to
vectors such that objective value is the energy of the state.

Proof. Let |φ〉 be a quantum state, and let v0 := (Re(|φ〉), Im(|φ〉)), and vpi := (Re(Wpi|φ〉),
Im(Wpi|φ〉)), for p ∈ [n], i ∈ {0, 1, 2, 3}. Here Re(u) := (Re(ui))i∈[d], Im(u) := (Im(ui))i∈[d]
for a d-dimensional complex vector u.
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To check the SDP constraints, first note the v0 has norm 1, and v0 = vp0 for all p. Next,
each vector vpi has norm 1, and two different vectors on qubit p are orthogonal:

vpi · vpj = (Re(Wpi|φ〉), Im(Wpi|φ〉)) · (Re(Wpj |φ〉), Im(Wpj |φ〉))
= Re(〈φ|WpiWpj |φ〉) = δij ,

for all i, j ∈ {1, 2, 3}, p ∈ [n]. This follows from the Pauli matrices anticommutation relations
WiWj +WjWi = 2δijI.

Next, we consider two vectors on different qubits. Let ρ := |φ〉〈φ|. Then

vpi · vqj = (Re(Wpi|φ〉), Im(Wpi|φ〉)) · (Re(Wqj |φ〉), Im(Wqj |φ〉))
= Re(〈φ|WpiWqj |φ〉) = Re(Tr(WpiWqjρ)),

for all p 6= q, and i, j ∈ {0, 1, 2, 3}. This follows from the fact that two Pauli matrices
commute when they act on different qubits.

The SDP objective is therefore equal to the enegy of the state:

∑
(p,q)∈E

3∑
i,j=0

Cpqijvpi · vqj =
∑

(p,q)∈E

3∑
i,j=0

1
4 Tr(Hpq(Wi ⊗Wj))Re(Tr(WpiWqjρ))

= Re

 ∑
(p,q)∈E

3∑
i,j=0

1
4 Tr(Hpq(Wi ⊗Wj)) Tr((Wi ⊗Wj)ρpq)


=

∑
(p,q)∈E

Tr(Hpqρpq) = Tr(Hρ),

where ρpq is the reduced density matrix of ρ onto qubits {p, q}. The second last equality is
because the Pauli matrices form an orthogonal basis. The last constraint of (S1) asserts that
the energy contribution from the site (p, q) should not exceed the sum of the eigenvalues of
(p, q). The seemingly unnecessary last constraint will be useful in the analysis. C

We can solve the SDP to arbitrary multiplicative quality 1− ε using existing SDP solvers
(for example, [1]), in time polynomial to the size of the program and log(1/ε). This gives us
a solution of quality OPTSDP(1− ε), where OPTSDP is the optimal value of the SDP. We
will ignore (1− ε) factor because it can be absorbed into our approximation ratio.

The algorithm and analysis

Algorithm 1 MAX-2-Local Hamiltonian with PSD local terms.

1: Input: {Hpq : (p, q) ∈ E}, E ⊆ [n]× [n].
2: Calculate (Cpqij := Tr(Hpq(Wi ⊗Wj))/4)pqij .
3: Solve the SDP (S1), and get (v0, (vpi)pi).
4: Pick a uniformly random unit vector r ∈ RN (use N := 4n+ 1).
5: Set (x0, (xpi)pi) := (sgn(v0 · r), (sgn(vpi · r))pi).
6: If

∑
(p,q)∈E

(∑3
i=1 Cpqi0xpix0 +

∑3
j=1 Cpq0jx0xqj

)
< 0, set x̃pi := −xpix0 for all p and

1 ≤ i ≤ 3. Otherwise set x̃pi := xpix0 for all p, 1 ≤ i ≤ 3.
7: Output state ρ :=

⊗n
p=1 ρp, where ρp := 1

2I + 1
2
∑3
i=1

1√
3 x̃piWi
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Algorithm 1 describes our rounding procedure. Let Cpq ∈ R4×4 refer to the matrix
(Cpqij)ij , let cpq := Cpq00 = 1

4
∑4
t=1 wpq,t, let apq ∈ R3 refer to the vector (Cpqi0)i:i>0, and

bpq := (Cpq0j)j:j>0 is defined analogously. Finally C̄pq ∈ R3×3 is (Cpqij)ij:i,j>0. So we have

Cpq =

 cpq bTpq

apq C̄pq

 .
To apply the bound from [9], we need a symmetrized and PSD version of Cpq, so define

C+
pq =


cpq aTpq bTpq

apq cpqI C̄pq

bpq C̄Tpq cpqIWpqi

 ∈ R7×7.

The matrix C+
pq is clearly symmetic. To see that C+

pq � 0, use the fact that Hpq =∑4
t=1 wpq,t|γpq,t〉〈γpq,t| for non-negative wpq,t’s, and get

4WpqjC
+
pqij =

4∑
t=1

wpq,tRe (Tr [|γpq,t〉〈γpq,t|WpqiWpqj ])

=
4∑
t=1

wpq,t(Re(Wpqi|γpq,t〉), Im(Wpqi|γpq,t〉)) · (Re(Wpqj |γpq,t〉), Im(Wpqj |γpq,t〉)),

where (Wpqi)0≤i≤6 := (I,W1 ⊗ I,W2 ⊗ I,W3 ⊗ I, I ⊗ W1, I ⊗ W2, I ⊗ W3). Since C+
pq is

therefore a non-negative-weighted sum of Gram matrices, it is PSD. Now we state the main
theorem.

I Theorem 13. Algorithm 1 runs in polynomial time and outputs a product state with expected
energy at least 0.328 OPT, where OPT is the maximum energy of the 2-local Hamiltonian
H =

∑
(p,q)∈E Hpq ⊗ I[n]\{p,q} where Hpq is PSD for all (p, q) ∈ E.

Proof. Algorithm 1 outputs a product state, whose reduced part on p and q is

ρp ⊗ ρq = 1
4

(
I + x̃p1√

3
W1 + x̃p2√

3
W2 + x̃p3√

3
W3

)
⊗
(
I + x̃q1√

3
W1 + x̃q2√

3
W2 + x̃q3√

3
W3

)
.

Thus the total energy of the approximate solution is Er
[∑

(p,q)∈E Tr(Hpq(ρp ⊗ ρq))
]
, which

is equal to

Er
∑

(p,q)∈E

[
cpq +

∑3
i=1 apqix̃pi +

∑3
j=1 bpqj x̃qj√

3
+
∑3
i,j=1 C̄pqij x̃pix̃qj

3

]
. (1)

Meanwhile, the SDP objective value is

∑
(p,q)∈E

cpq +
3∑
i=1

apqivpi · v0 +
3∑
j=1

bpqjv0 · vqj +
3∑

i,j=0
C̄pqijvpi · vqj

 . (2)
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Fix an edge (p, q) ∈ E, and let vpq := (v0, vp1, vp2, vp3, vq1, vq2, vq3). By applying Lemma 9
to C+

pq and vpq, we get

Er

7cpq + 2
3∑
i=1

apqixpix0 + 2
3∑
j=1

bpqjx0xqj + 2
3∑

i,j=1
C̄pqijxpixqj

 ≥
α7

7cpq + 2
3∑
i=1

apqivpi · v0 + 2
3∑
j=1

bpqjv0 · vqj + 2
3∑

i,j=1
C̄pqijvpi · vqj

 . (3)

The coefficients 7 and 2 above come from how many times each parts are in C+
pq. We

would like to compare the energy of our solution (1) against the SDP objective (2) using
the inequality (3). For the series of inequalities that will appear below, we define some
short-hand:

Lx :=
∑

(p,q)∈E

 3∑
i=1

apqixpix0 +
3∑
j=1

bpqjx0xqj

 ,
Qx :=

∑
(p,q)∈E

 3∑
i,j=1

C̄pqijxpixqj

 ,
Lv :=

∑
(p,q)∈E

 3∑
i=1

apqivpi · v0 +
3∑
j=1

bpqjv0 · vqj

 ,
Qv :=

∑
(p,q)∈E

 3∑
i,j=1

C̄pqijvpi · vqj

 ,
L̃x :=

∑
(p,q)∈E

 3∑
i=1

apqix̃pi +
3∑
j=1

bpqj x̃qj

 ,
Q̃x :=

∑
(p,q)∈E

 3∑
i,j=1

C̄pqij x̃pix̃qj

 ,
c :=

∑
(p,q)∈E

cpq.

After summing the inequality (3) over the edges and moving the terms, we get

Er
[
c+ Lx +Qx

3

]
≥
α7( 7

2c+ Lv +Qv)− 1
2c

3 . (4)

Because L̃x ≥ 0 (Step 6 of Algorithm 1), and L̃x + Q̃x ≥ Lx + Qx for every r, we can
bound the energy of the approximate solution:

Er

[
c+ L̃x√

3
+ Q̃x

3

]
≥ Er

[
c+ L̃x + Q̃x

3

]
≥ Er

[
c+ Lx +Qx

3

]
≥
α7( 7

2c+ Lv +Qv)− 1
2c

3 ,

where the last inequality follows from (4). We can now bound the approximation factor,

Er
[
c+ L̃x√

3 + Q̃x

3

]
c+ Lv +Qv

≥
α7( 7

2c+ Lv +Qv)− 1
2c

3(c+ Lv +Qv)
=
α7( 7

2c+ S)− 1
2c

3(c+ S) ,
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letting S := Lv +Qv for convenience. The value of the SDP (S1) is c+ S and the energy of
the maximally mixed state is c =

∑
(p,q)∈E cpq. The SDP value c+ S should at least be the

energy of the maximally mixed state, so c+S ≥ c. This implies that S ≥ 0. By summing the
last constraint of (S1) over the edges, we get c+ S ≤

∑
(p,q)∈E,1≤t≤4 wpq,t = 4c. Therefore,

the approximation ratio is at least

min
S∈[0,3c]

α7( 7
2c+ S)− 1

2c

3(c+ S) ≥
α7( 13

8 )− 1
8

3 = 0.328 . . . .

The min occurs at S = 3c since α7( 7
2 c+S)− 1

2 c

3(c+S) = α7(c+S)+α7
5
2 c−

1
2 c

3(c+S) = α7
3 + 5α7−1

6(c+S)c is decreasing
for c+ S ≥ 0. J

4 Improved approximation in for tensor product projectors using a
different SDP and rounding

In this section we show that a better approximation factor is possible when each local
term is a rank 1 projector that is a product of 2 rank 1 projectors on a qubit. Namely,
Hpq = Hpq,p ⊗Hpq,q, and Hpq,p, Hpq,q are rank 1 projectors on qubit p, q respectively for
all (p, q) ∈ E. The algorithm is similar to the previous one in that Goemans-Williamson
approach is used. This time, however, we formulate the SDP and round the vector solution
in a different way: we first formulate a quadratic programming (QP) in the real space that
has the highest energy by a product state as the objective value, and relax the QP to an
SDP. The previous rounding reduced the norms of the solution vectors by 1/

√
3, but here

we will keep the norms. The first observation we make is that the value of the following
quadratic program (Q) is the maximum energy achieved by a product state.

Quadratic program for MAX-2-Local Hamiltonian over product states:

Maximize 4
∑
pq

3∑
i,j=0

Cpqijxpixqj (Q)

subject to:

xp0 = 1
2 , ∀p

3∑
i=0

x2
pi = 1

2 , ∀p

xpi ∈ R, ∀p, i.

The Pauli coefficients Cpqij are the same as defined previously. The constraints will
restrict us to the set of quantum states that are product states. We use the Pauli basis so
that all numbers we solve for are real valued. Representing qubits as density matrices, let
Φp := |φp〉〈φp| for all p.

For any density matrix, there exists a unique decomposition into Pauli matrices. So
we can write Φp =

∑3
i=0 xpiWi, and Hpq =

∑3
i,j=0 CpqijWi ⊗Wj . Moreover, we know that

Tr[Φp] = 1 because the state |φp〉 is norm 1, and also Tr[Φ2
p] = 1 if we assume, without loss of

generality, that the state |φp〉 is pure. This implies that (i) xp0 = 1
2 for all p, (ii)

∑
i x

2
pi = 1

2
for all p, (iii) Cpq00 = 1

4 for all p, q, and (iv)
∑
ij C

2
pqij = 1

4 for all p, q.
The reverse process also works: Given real numbers (xp0, xp1, xp2, xp3) as a part of a

feasible solution to (Q), one can construct a state |φp〉 such that |φp〉〈φp| =
∑3
i=0 xpiWi.
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This is because of the properties of the Pauli basis:

Φ2
p =

3∑
i,j=0

xpixpjWiWj = x2
p0W

2
0 + 2

3∑
i=0

xpixp0Wi +
3∑

i,j=1
xpixpjWiWj

= 1
4W0 +

3∑
i=0

xpiWi +
3∑
i=1

x2
piW

2
i +

3∑
1≤i,j≤3,i6=j

xpixpjWiWj

= 1
4W0 +

3∑
i=0

xpiWi +
3∑
i=1

x2
piW0 +

3∑
1≤i<j≤3

xpixpj(WiWj +WjWi)

= 1
4W0 +

3∑
i=0

xpiWi + 1
4W0 + 0 = Φp.

The fact that Φ2
p = Φp implies that Φp is a projector, and Tr Φp = 1 implies that it is a

rank 1 projector. So there exists a vector |φp〉 such that |φp〉〈φp| = Φp =
∑3
i=0 xpiWi.

Exactly solving this program is NP-hard, because as noted in Section 2.2, MAX-2-CSP can
be cast as an instance of MAX-2-LH. Additionally, an optimum solution to such a MAX-2-LH
instance is always, without loss of generality, a product state. We can, however, solve this
approximately by first relaxing the program to an SDP, solving the SDP in polynomial time,
and performing randomized rounding to the SDP solution we get to obtain a valid solution
to the original program. Below is the SDP to which we relax. The coefficients Cpqij ’s are
given as constants.

SDP relaxation for MAX-2-Local Hamiltonian over product states:

Maximize 4
∑
pq

3∑
i,j=0

Cpqijvpi · vqj (S2)

subject to:

‖v0‖ = 1
2

‖vp0‖ = 1
2 , ∀p

v0 · vp0 = 1
4 , ∀p

3∑
i=0
‖vpi‖2 = 1

2 , ∀p

v0 ∈ RN

vpi ∈ RN , ∀p, i.

The first three conditions simply force that for all p, vp0 = v0. The SDP is in fact a
relaxation of the quadratic program in the sense that given a solution xpi, for all p, i, to
the first program, the vector solution v0 := (1, 0, . . . , 0), vpi := xpiv0, for all p, i, is a feasible
solution to the SDP that achieves the same objective value. Therefore the value of the SDP
is at least the value of the first program. Algorithm 2 details our approach.

I Theorem 14. Given a local Hamiltonian on n qubits H =
∑
pq Ppq, where Ppq is a product

of a rank 1 projector on qubit p and a rank 1 projector on qubit q, Algorithm 2 outputs a
product state that has an expected energy of at least α2 ·OPTprod, where α2 = 0.796 . . ., and
OPTprod = max|φ1〉,...,|φn〉〈φ1| . . . 〈φn|H|φ1〉 . . . |φn〉.
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Algorithm 2 MAX-2-local Hamiltonian with PSD local terms.

1: Input: {Hpq : (p, q) ∈ E}, E ⊆ [n]× [n].
2: Calculate (Cpqij := Tr(Hpq(Wi ⊗Wj))/4)pqij .
3: Solve the SDP (S2), and get (v0, (vpi)).
4: Pick a random unit vector r ∈ RN (use N := 4n+ 1).
5: For all p ∈ [n] and i ∈ {0, 1, 2, 3}, assign xpi := ‖vpi‖ sgn(v0 · r) sgn(vpi · r).
6: Output Φp :=

⊗n
p=1

∑3
i=0 xpiWi as the resulting product state assignment.

Proof. We express the rank 1 projector Hpq as |γpq〉〈γpq| for some state |γpq〉. OPTprod is
the value of the program (Q). We relax the program (Q) to the SDP (S2) and get vpi for
all p, i as a solution to the SDP. To get real-valued xpi, we perform randomized rounding
reminiscent of the Goemans-Williamson algorithm: xpi = ‖vpi‖ sgn(v0 · r) sgn(vpi · r). The
xpi are used in Step 6 of the algorithm to produce a product state; these variables constitute
a feasible solution to (Q) because xp0 = ‖vp0‖ sgn(v0 · r) sgn(vp0 · r) = 1

2 sgn(v0 · r)2 = 1
2 , and

3∑
i=0

x2
pi =

3∑
i=0
‖vpi‖2 sgn(v0 · r)2 sgn(vpi · r)2 =

3∑
i=0
‖vpi‖2 = 1

2 .

We apply Lemma 16 below to analyze the performance of the rounding term by term to
yield:

E

4
∑
pq

3∑
i,j=0

Cpqijxpixqj

 ≥ α24
∑
pq

3∑
i,j=0

Cpqijvpi · vqj = α2 OPTSDP ≥ α2 OPTprod .J

I Corollary 15. Algorithm 2 outputs a product state achieving 0.40 ·OPT.

Proof. By Theorem 14 the algorithm outputs a state achieving 0.796 ·OPTprod, which is at
least 0.40 ·OPT /2 by Theorem 3. J

Note that we have not yet used the assumption that Hpq is a tensor product of rank 1
projectors. In this case we have that |γpq〉〈γpq| = Hpq = Hpq,p ⊗ Hpq,q = |γp〉〈γp| ⊗
|γq〉〈γq| = (|γp〉 ⊗ |γq〉)(〈γp| ⊗ 〈γq|), for some states |γp〉 and |γq〉. Consequently |γpq〉 =
|γp〉 ⊗ |γq〉 is a product state, and the Pauli coefficients are Cpqij = Tr(|γpq〉〈γpq|Wi ⊗Wj)/4
= Tr((|γp〉〈γp| ⊗ |γq〉〈γq|)(Wi ⊗Wj))/4 = Tr(|γp〉〈γp|Wi) Tr(|γp〉〈γp|Wi)/4 = CpiCqj . So for
all i, j, Cpqij = CpiCqj . Note that since |γp〉 is a 1 qubit state, C2

p0 = ( 1
2 )2 =

∑3
i=1 C

2
pi. To

conclude our analysis, we leverage this structure in the lemma below.

I Lemma 16. Let u0, . . . , u3, v0, . . . , v3 ∈ RN be vectors such that u0 = v0, ‖u0‖ = ‖v0‖ =
1/2, and

∑3
i=0 ‖ui‖2 =

∑3
i=0 ‖vi‖2 = 1/2. Let xi = ‖ui‖ sgn(u0 · r) sgn(ui · r), yj =

‖vj‖ sgn(v0 · r) sgn(vj · r) be the rounding of the vectors with respect to a uniformly random
vector r ∈ SN−1. Let Cij = CiDj where Ci, Dj ∈ R such that C2

0 =
∑3
i=1 C

2
i = D2

0 =∑3
i=1D

2
i . Then

α2

3∑
i,j=0

Cijui ·vj ≤ E

 3∑
i,j=0

Cijxiyj

 , where α2 = min
0<θ<arccos−1/3

2
π

2π − 3θ
1 + 3 cos θ = 0.796 . . . .
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Proof. The proof is by applying Lemma 7, Lemma 8, and the Cauchy-Schwarz inequality.
Let Ui = sgn(ui · r) and Vi = sgn(vi · r) and note that U0 = V0. Also for convenience, set

A0 := C0‖u0‖ −
3∑
i=1
|Ci|‖ui‖, A1 :=

3∑
i=1
|Ci|‖ui‖(1 + sgn(Ci)U0Ui),

B0 := D0‖v0‖ −
3∑
j=1
|Dj |‖vj‖, B1 :=

3∑
i=1
|Ci|‖ui‖(1 + sgn(Ci)U0Ui)

E

 3∑
i,j=0

Cijxiyj

 = E

 3∑
i,j=0

CiDj‖ui‖U0Ui‖vj‖V0Vj


= E

 3∑
i=0

Ci‖ui‖U0Ui

3∑
j=0

Dj‖vj‖V0Vj


= E

(C0‖u0‖+
3∑
i=1

Ci‖ui‖U0Ui

)D0‖v0‖+
3∑
j=1

Dj‖vj‖V0Vj


= E [(A0 +A1)(B0 +B1)]
= A0B0 + E [A1B0] + E [A0B1] + E [A1B1] .

For convenience, set

A′0 := A0, A′1 :=
3∑
i=1
|Ci|‖ui‖(1 + sgn(Ci)

u0 · ui
‖u0‖‖ui‖

),

B′0 := B0, B′1 :=
3∑
i=1
|Di|‖vi‖(1 + sgn(Di)

u0 · vi
‖u0‖‖vi‖

).

From Lemma 7,

E [1 + sgn(Ci) sgn(u0 · r) sgn(ui · r)] ≥ α1

(
1 + sgn(Ci)

u0 · ui
‖u0‖‖ui‖

)

for all i. Therefore E [A1] ≥ α1A
′
1 and E [B1] ≥ α1B

′
1.

Using the fact that either exactly one of sgn(Ci), sgn(Dj), or sgn(Ci) sgn(Dj) is positive,
or all three are, Lemma 8 implies

E [(1 + sgn(Ci) sgn(u0 · r) sgn(ui · r))(1 + sgn(Dj) sgn(v0 · r) sgn(vj · r))] ≥

α2

(
1 + sgn(Ci)

u0 · ui
‖u0‖‖ui‖

+ sgn(Dj)
v0 · vj
‖v0‖‖vj‖

+ sgn(CiDj)
ui · vj
‖ui‖‖vj‖

)

for all i, j. Therefore E [A1B1] ≥ α2A
′
1B
′
1.
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From Cauchy-Schwarz we have A0, B0 ≥ 0, and using this inequality we can bound

E

 3∑
i,j=0

Cijxiyj


= A0B0 + E [A1B0] + E [A0B1] + E [A1B1] .
≥ A0B0 + α1A

′
1B
′
0 + α1A

′
0B
′
1 + α2A

′
1B
′
1

≥ α2A0B0 + α2A
′
1B
′
0 + α2A

′
0B
′
1 + α2A

′
1B
′
1

= α2(A′0 +A′1)(B′0 +B′1)

= α2

3∑
i,j=0

CiDjui · vj = α2

3∑
i,j=0

Cijui · vj . J
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