5 research outputs found
Positive allosteric modulation of GABAB receptors ameliorates sensorimotor gating in rodent models
This is the peer reviewed version of the following article: Frau, R., Bini, V., Pillolla, G., Malherbe, P., Pardu, A., Thomas, A. W., Devoto, P. and Bortolato, M. (2014), Positive Allosteric Modulation of GABAB Receptors Ameliorates Sensorimotor Gating in Rodent Models. CNS Neurosci Ther, 20: 679–684. doi:10.1111/cns.12261, which has been published in final form at http://doi.org/10.1111/cns.12261. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.BACKGROUND: Converging evidence points to the involvement of γ-amino-butyric acid B receptors (GABABRs) in the regulation of information processing. We previously showed that GABABR agonists exhibit antipsychotic-like properties in rodent models of sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. The therapeutic potential of these agents, however, is limited by their neuromuscular side effects; thus, in the present study we analyzed whether rac-BHFF, a potent GABABR positive allosteric modulator (PAM), could counter spontaneous and pharmacologically induced PPI deficits across various rodent models. METHODS: We tested the antipsychotic effects of rac-BHFF on the PPI deficits caused by the N-methyl-D-aspartate glutamate receptor antagonist dizocilpine, in Sprague-Dawley rats and C57BL/6 mice. Furthermore, we verified whether rac-BHFF ameliorated the spontaneous PPI impairments in DBA/2J mice. RESULTS: rac-BHFF dose-dependently countered the PPI deficits across all three models, in a fashion akin to the GABABR agonist baclofen and the atypical antipsychotic clozapine; in contrast with these compounds, however, rac-BHFF did not affect startle magnitude. CONCLUSIONS: The present data further support the implication of GABABRs in the modulation of sensorimotor gating, and point to their PAMs as a novel promising tool for antipsychotic treatment, with fewer side effects than GABABR agonists
Combined Antagonism of 5-HT 2 and NMDA Receptors Reduces the Aggression of Monoamine Oxidase a Knockout Mice
The enzyme monoamine oxidase A (MAOA) catalyzes the degradation of several neurotransmitters, including serotonin. A large body of evidence has shown that genetic MAOA deficiency predisposes humans and mice to aggression and antisocial behavior. We previously documented that the aggression of male MAOA-deficient mice is contributed by serotonin 5-HT(2) and glutamate N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC). Indeed, blocking either receptor reduces the aggression of MAOA knockout (KO) mice; however, 5-HT(2) receptor antagonists, such as ketanserin (KET), reduce locomotor activity, while NMDA receptor blockers are typically associated with psychotomimetic properties. To verify whether NMDA receptor blockers induce psychotomimetic effects in MAOA KO mice, here we tested the effects of these compounds on prepulse inhibition (PPI) of the acoustic startle reflex. We found that male MAOA KO mice are hypersensitive to the PPI-disrupting properties of NMDA receptor antagonists, including the non-competitive antagonist dizocilpine (DIZ; 0.1, 0.3 mg/kg, IP) and the NR2B subunit-specific blocker Ro-256981 (5, 10 mg/kg, IP). Since KET has been previously shown to counter the PPI deficits caused by NMDA receptor antagonists, we tested the behavioral effects of the combination of KET (2 mg/kg, IP) and these drugs. Our results show that the combination of KET and DIZ potently reduces aggression in MAOA KO mice without any PPI deficits and sedative effects. While the PPI-ameliorative properties of KET were also observed after infusion in the medial PFC (0.05 ÎĽg/side), KET did not counter the PPI-disruptive effects of Ro-256981 in MAOA KO mice. Taken together, these results point to the combination of non-subunit-selective NMDA and 5-HT(2) receptor antagonists as a potential therapeutic approach for aggression and antisocial behavior with a better safety and tolerability profile than each monotherapy
The neurosteroidogenic enzyme 5α-reductase mediates psychotic-like complications of sleep deprivation
Acute sleep deprivation (SD) can trigger or exacerbate psychosis- and mania-related symptoms; the neurobiological basis of these complications, however, remains elusive. Given the extensive involvement of neuroactive steroids in psychopathology, we hypothesized that the behavioral complications of SD may be contributed by 5α-reductase (5αR), the rate-limiting enzyme in the conversion of progesterone into the neurosteroid allopregnanolone. We first tested whether rats exposed to SD may exhibit brain-regional alterations in 5αR isoenzymes and neuroactive steroid levels; then, we assessed whether the behavioral and neuroendocrine alterations induced by SD may be differentially modulated by the administration of the 5αR inhibitor finasteride, as well as progesterone and allopregnanolone. SD selectively enhanced 5αR expression and activity, as well as AP levels, in the prefrontal cortex; furthermore, finasteride (10-100 mg/kg, IP) dose-dependently ameliorated PPI deficits, hyperactivity, and risk-taking behaviors, in a fashion akin to the antipsychotic haloperidol and the mood stabilizer lithium carbonate. Finally, PPI deficits were exacerbated by allopregnanolone (10 mg/kg, IP) and attenuated by progesterone (30 mg/kg, IP) in SD-subjected, but not control rats. Collectively, these results provide the first-ever evidence that 5αR mediates a number of psychosis- and mania-like complications of SD through imbalances in cortical levels of neuroactive steroids
Pregnenolone for the treatment of L-DOPA-induced dyskinesia in Parkinson's disease
Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD