20 research outputs found

    Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. CAV1 and CAV2 organize membrane lipid rafts (MLRs) important for cell signaling and neuronal survival, and overexpression of CAV1 ameliorates ALS phenotypes in vivo. Genome-wide association studies localize a large proportion of ALS risk variants within the non-coding genome, but further characterization has been limited by lack of appropriate tools. By designing and applying a pipeline to identify pathogenic genetic variation within enhancer elements responsible for regulating gene expression, we identify disease-associated variation within CAV1/CAV2 enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce CAV1/CAV2 expression in neurons. Additional enrichment of ALS-associated mutations within CAV1 exons positions CAV1 as an ALS risk gene. We propose CAV1/CAV2 overexpression as a personalized medicine target for ALS

    Increased central adiposity and decreased subcutaneous adipose tissue 11β‐hydroxysteroid dehydrogenase type 1 are associated with deterioration in glucose tolerance—A longitudinal cohort study

    Get PDF
    Objective and Context Increasing adiposity, ageing and tissue-specific regeneration of cortisol through the activity of 11β-hydroxysteroid dehydrogenase type 1 have been associated with deterioration in glucose tolerance. We undertook a longitudinal, prospective clinical study to determine if alterations in local glucocorticoid metabolism track with changes in glucose tolerance. Design, Patients, and Measurements Sixty-five overweight/obese individuals (mean age 50.3 ± 7.3 years) underwent oral glucose tolerance testing, body composition assessment, subcutaneous adipose tissue biopsy and urinary steroid metabolite analysis annually for up to 5 years. Participants were categorized into those in whom glucose tolerance deteriorated (“deteriorators”) or improved (“improvers”). Results Deteriorating glucose tolerance was associated with increasing total and trunk fat mass and increased subcutaneous adipose tissue expression of lipogenic genes. Subcutaneous adipose tissue 11β-HSD1 gene expression decreased in deteriorators, and at study completion, it was highest in the improvers. There was a significant negative correlation between change in area under the curve glucose and 11β-HSD1 expression. Global 11β-HSD1 activity did not change and was not different between deteriorators and improvers at baseline or follow-up. Conclusion Longitudinal deterioration in metabolic phenotype is not associated with increased 11β-HSD1 activity, but decreased subcutaneous adipose tissue gene expression. These changes may represent a compensatory mechanism to decrease local glucocorticoid exposure in the face of an adverse metabolic phenotype
    corecore