239 research outputs found

    Modeling human trophoblast, the placental epithelium at the maternal fetal interface.

    Get PDF
    Appropriate human trophoblast lineage specification and differentiation is crucial for the establishment of normal placentation and maintenance of pregnancy. However, due to the lack of proper modeling systems, the molecular mechanisms of these processes are still largely unknown. Much of the early studies in this area have been based on animal models and tumor-derived trophoblast cell lines, both of which are suboptimal for modeling this unique human organ. Recent advances in regenerative and stem cell biology methods have led to development of novel in vitro model systems for studying human trophoblast. These include derivation of human embryonic and induced pluripotent stem cells and establishment of methods for the differentiation of these cells into trophoblast, as well as the more recent derivation of human trophoblast stem cells. In addition, advances in culture conditions, from traditional two-dimensional monolayer culture to 3D culturing systems, have led to development of trophoblast organoid and placenta-on-a-chip model, enabling us to study human trophoblast function in context of more physiologically accurate environment. In this review, we will discuss these various model systems, with a focus on human trophoblast, and their ability to help elucidate the key mechanisms underlying placental development and function. This review focuses on model systems of human trophoblast differentiation, including advantages and limitations of stem cell-based culture, trophoblast organoid, and organ-on-a-chip methods and their applications in understanding placental development and disease

    Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction.

    Get PDF
    The human placenta is a poorly-understood organ, but one that is critical for proper development and growth of the fetus in-utero. The epithelial cell type that contributes to primary placental functions is called "trophoblast," including two main subtypes, villous and extravillous trophoblast. Cytotrophoblast and syncytiotrophoblast comprise the villous compartment and contribute to gas and nutrient exchange, while extravillous trophoblast invade and remodel the uterine wall and vessels, in order to supply maternal blood to the growing fetus. Abnormal differentiation of trophoblast contributes to placental dysfunction and is associated with complications of pregnancy, including preeclampsia (PE) and fetal growth restriction (FGR). This review describes what is known about the cellular organization of the placenta during both normal development and in the setting of PE/FGR. It also explains known trophoblast lineage-specific markers and pathways regulating their differentiation, and how these are altered in the setting of PE/FGR, focusing on studies which have used human placental tissues. Finally, it also highlights remaining questions and needed resources to advance this field

    The role of Sirtuin1-PPARγ axis in placental development and function.

    Get PDF
    Placental development is important for proper in utero growth and development of the fetus, as well as maternal well-being during pregnancy. Abnormal differentiation of placental epithelial cells, called trophoblast, is at the root of multiple pregnancy complications, including miscarriage, the maternal hypertensive disorder preeclampsia and intrauterine growth restriction. The ligand-activated nuclear receptor, PPARγ, and nutrient sensor, Sirtuin-1, both play a role in numerous pathways important to cell survival and differentiation, metabolism and inflammation. However, each has also been identified as a key player in trophoblast differentiation and placental development. This review details these studies, and also describes how various stressors, including hypoxia and inflammation, alter the expression or activity of PPARγ and Sirtuin-1, thereby contributing to placenta-based pregnancy complications

    PPARγ Regulates Trophoblast Proliferation and Promotes Labyrinthine Trilineage Differentiation

    Get PDF
    BACKGROUND:Abnormal trophoblast differentiation and function is the basis of many placenta-based pregnancy disorders, including pre-eclampsia and fetal growth restriction. PPARgamma, a ligand-activated nuclear receptor, plays essential roles in placental development; null murine embryos die at midgestation due to abnormalities in all placental layers, in particular, small labyrinth and expanded giant cell layer. Previous studies have focused mostly on the role of PPARgamma in trophoblast invasion. Based on the previously reported role of PPARgamma in preadipocyte differentiation, we hypothesized that PPARgamma also plays a pivotal role in trophoblast differentiation. To test this hypothesis, we report derivation of wild-type and PPARgamma-null trophoblast stem (TS) cells. METHODOLOGY/PRINCIPAL FINDINGS:PPARgamma-null TS cells showed defects in both proliferation and differentiation, specifically into labyrinthine trophoblast. Detailed marker analysis and functional studies revealed reduced differentiation of all three labyrinthine lineages, and enhanced giant cell differentiation, particularly the invasive subtypes. In addition, rosiglitazone, a specific PPARgamma agonist, reduced giant cell differentiation, while inducing Gcm1, a key regulator in labyrinth. Finally, reintroducing PPARgamma into null TS cells, using an adenovirus, normalized invasion and partially reversed defective labyrinthine differentiation, as assessed both by morphology and marker analysis. CONCLUSIONS/SIGNIFICANCE:In addition to regulating trophoblast invasion, PPARgamma plays a predominant role in differentiation of labyrinthine trophoblast lineages, which, along with fetal endothelium, form the vascular exchange interface with maternal blood. Elucidating cellular and molecular mechanisms mediating PPARgamma action will help determine if modulating PPARgamma activity, for which clinical pharmacologic agonists already exist, might modify the course of pregnancy disorders associated with placental dysfunction

    An international internet survey of the experiences of 1,714 mothers with a late stillbirth: The STARS cohort study

    Get PDF
    Background: Stillbirth occurring after 28 weeks gestation affects between 1.5-4.5 per 1,000 births in high-income countries. The majority of stillbirths in this setting occur in women without risk factors. In addition, many established risk factors such as nulliparity and maternal age are not amenable to modification during pregnancy. Identification of other risk factors which could be amenable to change in pregnancy should be a priority in stillbirth prevention research. Therefore, this study aimed to utilise an online survey asking women who had a stillbirth about their pregnancy in order to identify any common symptoms and experiences. Methods: A web-based survey. Results: A total of 1,714 women who had experienced a stillbirth >3 weeks prior to enrolment completed the survey. Common experiences identified were: perception of changes in fetal movement (63 % of respondents), reports of a "gut instinct" that something was wrong (68 %), and perceived time of death occurring overnight (56 %). A quarter of participants believed that their baby's death was due to a cord issue and another 18 % indicated that they did not know the reason why their baby died. In many cases (55 %) the mother believed the cause of death was different to that told by clinicians. Conclusions: This study confirms the association between altered fetal movements and stillbirth and highlights novel associations that merit closer scrutiny including a maternal gut instinct that something was wrong. The potential importance of maternal sleep is highlighted by the finding of more than half the mothers believing their baby died during the night. This study supports the importance of listening to mothers' concerns and symptoms during pregnancy and highlights the need for thorough investigation of stillbirth and appropriate explanation being given to parents
    corecore