42 research outputs found
Oral dosing for antenatal corticosteroids in the Rhesus macaque.
Antenatal corticosteroids (ACS) are standard of care for women at risk of preterm delivery, although choice of drug, dose or route have not been systematically evaluated. Further, ACS are infrequently used in low resource environments where most of the mortality from prematurity occurs. We report proof of principle experiments to test betamethasone-phosphate (Beta-P) or dexamethasone-phosphate (Dex-P) given orally in comparison to the clinical treatment with the intramuscular combination drug beta-phosphate plus beta-acetate in a Rhesus Macaque model. First, we performed pharmacokinetic studies in non-pregnant monkeys to compare blood levels of the steroids using oral dosing with Beta-P, Dex-P and an effective maternal intramuscular dose of the beta-acetate component of the clinical treatment. We then evaluated maternal and fetal blood steroid levels with limited fetal sampling under ultrasound guidance in pregnant macaques. We found that oral Beta is more slowly cleared from plasma than oral Dex. The blood levels of both drugs were lower in maternal plasma of pregnant than in non-pregnant macaques. Using the pharmacokinetic data, we treated groups of 6-8 pregnant monkeys with oral Beta-P, oral Dex-P, or the maternal intramuscular clinical treatment and saline controls and measured pressure-volume curves to assess corticosteroid effects on lung maturation at 5d. Oral Beta-P improved the pressure-volume curves similarly to the clinical treatment. Oral Dex-P gave more variable and nonsignificant responses. We then compared gene expression in the fetal lung, liver and hippocampus between oral Beta-P and the clinical treatment by RNA-sequencing. The transcriptomes were largely similar with small gene expression differences in the lung and liver, and no differences in the hippocampus between the groups. As proof of principle, ACS therapy can be effective using inexpensive and widely available oral drugs. Clinical dosing strategies must carefully consider the pharmacokinetics of oral Beta-P or Dex-P to minimize fetal exposure while achieving the desired treatment responses
Low-dose betamethasone-acetate for fetal lung maturation in preterm sheep
BackgroundAntenatal steroids are standard of care for women who are at risk of preterm delivery; however, antenatal steroid dosing and formulation have not been evaluated adequately. The standard clinical 2-dose treatment with betamethasone-acetate+betamethasone-phosphate is more effective than 2 doses of betamethasone-phosphate for the induction of lung maturation in preterm fetal sheep. We hypothesized that the slowly released betamethasone-acetate component induces similar lung maturation to betamethasone-phosphate+betamethasone-acetate with decreased dose and fetal exposure.ObjectiveThe purpose of this study was to investigate pharmacokinetics and fetal lung maturation of antenatal betamethasone-acetate in preterm fetal sheep.Study designGroups of 10 singleton-pregnant ewes received 1 or 2 intramuscular doses 24 hours apart of 0.25 mg/kg/dose of betamethasone-phosphate+betamethasone-acetate (the standard of care dose) or 1 intramuscular dose of 0.5 mg/kg, 0.25 mg/kg, or 0.125 mg/kg of betamethasone-acetate. Fetuses were delivered 48 hours after the first injection at 122 days of gestation (80% of term) and ventilated for 30 minutes, with ventilator settings, compliance, vital signs, and blood gas measurements recorded every 10 minutes. After ventilation, we measured static lung pressure-volume curves and sampled the lungs for messenger RNA measurements. Other groups of pregnant ewes and fetuses were catheterized and treated with intramuscular injections of betamethasone-phosphate 0.125 mg/kg, betamethasone-acetate 0.125 mg/kg, or betamethasone-acetate 0.5 mg/kg. Maternal and fetal betamethasone concentrations in plasma were measured for 24 hours.ResultsAll betamethasone-treated groups had increased messenger RNA expression of surfactant proteins A, B, and C, ATP-binding cassette subfamily A member 3, and aquaporin-5 compared with control animals. Treatment with 1 dose of intramuscular betamethasone-acetate 0.125mg/kg improved dynamic and static lung compliance, gas exchange, and ventilation efficiency similarly to the standard treatment of 2 doses of 0.25 m/kg of betamethasone-acetate+betamethasone-phosphate. Betamethasone-acetate 0.125 mg/kg resulted in lower maternal and fetal peak plasma concentrations and decreased fetal exposure to betamethasone compared with betamethasone-phosphate 0.125 mg/kg.ConclusionA single dose of betamethasone-acetate results in similar fetal lung maturation as the 2-dose clinical formulation of betamethasone-phosphate+betamethasone-acetate with decreased fetal exposure to betamethasone. A lower dose of betamethasone-acetate may be an effective alternative to induce fetal lung maturation with less risk to the fetus
Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep
To understand the changes in the structural integrity of fetal membranes during intrauterine inflammation, we evaluated the time course of expression and localization of damage-associated molecular patterns (DAMPs) and injury/remodeling in collagen and vascular smooth muscle. Time-mated ewes received intra-amniotic (IA) saline or IA lipopolysaccharide (LPS) for 5 hours to 15 days prior to a preterm delivery at 125 2 days (n = 5-7 animals/group). The DAMP high mobility group box 1 (HMGB1) protein assessed by Western blot was induced within 24 hours after IA LPS in the fetal membranes, and HMGB1 expression was localized to amnion epithelium, chorion vascular endothelium, and infiltrating inflammatory cells by immunohistology. Markers of vascular injury, intercellular adhesion molecule 1, and tissue plasminogen activator messenger RNA (mRNA) expression increased 5 to 12 hours after IA LPS in the chorioamnion indicating vascular injury. Chorion vascular remodeling with increased chorion arteriolar smooth muscle actin expression by morphometric analyses of immunohistology was noted 15 days after IA LPS. Collagen expression was nonhomogeneous by histochemical staining, and there was a trend toward decreased mRNA expression of collagen subunit COL5A1 after IA LPS. Conclusions: Intrauterine inflammation induced early increases in HMGB1 in the chorioamnion with a concomitant vascular injury followed by chorion arteriolar hypertrophy. There was nonhomogeneous collagen expression in the chorioamnion. These results have implications for understanding the pathogenesis of IA inflammation-induced preterm rupture of membranes
Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques.
BackgroundChorioamnionitis is associated with an increased risk of brain injury in preterm neonates. Inflammatory changes in brain could underlie this injury. Here, we evaluated whether neuroinflammation is induced by chorioamnionitis in a clinically relevant model.MethodsRhesus macaque fetuses were exposed to either intra-amniotic (IA) saline, or IA lipopolysaccharide (LPS) (1 mg) 16 or 48 h prior to delivery at 130 days (85 % of gestation) (n = 4-5 animals/group). We measured cytokines in the cerebrospinal fluid (CSF), froze samples from the left brain for molecular analysis, and immersion fixed the right brain hemisphere for immunohistology. We analyzed the messenger RNA (mRNA) levels of the pro-inflammatory cytokines IL-1β, CCL2, TNF-α, IL-6, IL-8, IL-10, and COX-2 in the periventricular white matter (PVWM), cortex, thalamus, hippocampus, and cerebellum by RT-qPCR. Brain injury was assessed by immunohistology for myelin basic protein (MBP), IBA1 (microglial marker), GFAP (astrocyte marker), OLIG2 (oligodendrocyte marker), NeuN (neuronal marker), CD3 (T cells), and CD14 (monocytes). Microglial proliferation was assessed by co-immunostaining for IBA1 and Ki67. Data were analyzed by ANOVA with Tukey's post-test.ResultsIA LPS increased mRNA expression of pro-inflammatory cytokines in the PVWM, thalamus, and cerebellum, increased IL-6 concentration in the CSF, and increased apoptosis in the periventricular area after 16 h. Microglial proliferation in the white matter was increased 48 h after IA LPS.ConclusionsLPS-induced chorioamnionitis caused neuroinflammation, microglial proliferation, and periventricular apoptosis in a clinically relevant model of chorioamnionitis in fetal rhesus macaques. These findings identify specific responses in the fetal brain and support the hypothesis that neuroinflammatory changes may mediate the adverse neurodevelopmental outcomes associated with chorioamnionitis
Oral dosing for antenatal corticosteroids in the Rhesus macaque.
Antenatal corticosteroids (ACS) are standard of care for women at risk of preterm delivery, although choice of drug, dose or route have not been systematically evaluated. Further, ACS are infrequently used in low resource environments where most of the mortality from prematurity occurs. We report proof of principle experiments to test betamethasone-phosphate (Beta-P) or dexamethasone-phosphate (Dex-P) given orally in comparison to the clinical treatment with the intramuscular combination drug beta-phosphate plus beta-acetate in a Rhesus Macaque model. First, we performed pharmacokinetic studies in non-pregnant monkeys to compare blood levels of the steroids using oral dosing with Beta-P, Dex-P and an effective maternal intramuscular dose of the beta-acetate component of the clinical treatment. We then evaluated maternal and fetal blood steroid levels with limited fetal sampling under ultrasound guidance in pregnant macaques. We found that oral Beta is more slowly cleared from plasma than oral Dex. The blood levels of both drugs were lower in maternal plasma of pregnant than in non-pregnant macaques. Using the pharmacokinetic data, we treated groups of 6-8 pregnant monkeys with oral Beta-P, oral Dex-P, or the maternal intramuscular clinical treatment and saline controls and measured pressure-volume curves to assess corticosteroid effects on lung maturation at 5d. Oral Beta-P improved the pressure-volume curves similarly to the clinical treatment. Oral Dex-P gave more variable and nonsignificant responses. We then compared gene expression in the fetal lung, liver and hippocampus between oral Beta-P and the clinical treatment by RNA-sequencing. The transcriptomes were largely similar with small gene expression differences in the lung and liver, and no differences in the hippocampus between the groups. As proof of principle, ACS therapy can be effective using inexpensive and widely available oral drugs. Clinical dosing strategies must carefully consider the pharmacokinetics of oral Beta-P or Dex-P to minimize fetal exposure while achieving the desired treatment responses
Prenatal inflammation enhances antenatal corticosteroid–induced fetal lung maturation
Respiratory complications are the major cause of morbidity and mortality among preterm infants, which is partially prevented by the administration of antenatal corticosteroids (ACS). Most very preterm infants are exposed to chorioamnionitis, but short- and long-term effects of ACS treatment in this setting are not well defined. In low-resource settings, ACS increased neonatal mortality by perhaps increasing infection. We report that treatment with low-dose ACS in the setting of inflammation induced by intraamniotic lipopolysaccharide (LPS) in rhesus macaques improves lung compliance and increases surfactant production relative to either exposure alone. RNA sequencing shows that these changes are mediated by suppression of proliferation and induction of mesenchymal cellular death via TP53. The combined exposure results in a mature-like transcriptomic profile with inhibition of extracellular matrix development by suppression of collagen genes COL1A1, COL1A2, and COL3A1 and regulators of lung development FGF9 and FGF10. ACS and inflammation also suppressed signature genes associated with proliferative mesenchymal progenitors similar to the term gestation lung. Treatment with ACS in the setting of inflammation may result in early respiratory advantage to preterm infants, but this advantage may come at a risk of abnormal extracellular matrix development, which may be associated with increased risk of chronic lung disease
Prenatal inflammation enhances antenatal corticosteroid-induced fetal lung maturation.
Respiratory complicˆations are the major cause of morbidity and mortality among preterm infants, which is partially prevented by the administration of antenatal corticosteroids (ACS). Most very preterm infants are exposed to chorioamnionitis, but short- and long-term effects of ACS treatment in this setting are not well defined. In low-resource settings, ACS increased neonatal mortality by perhaps increasing infection. We report that treatment with low-dose ACS in the setting of inflammation induced by intraamniotic lipopolysaccharide (LPS) in rhesus macaques improves lung compliance and increases surfactant production relative to either exposure alone. RNA sequencing shows that these changes are mediated by suppression of proliferation and induction of mesenchymal cellular death via TP53. The combined exposure results in a mature-like transcriptomic profile with inhibition of extracellular matrix development by suppression of collagen genes COL1A1, COL1A2, and COL3A1 and regulators of lung development FGF9 and FGF10. ACS and inflammation also suppressed signature genes associated with proliferative mesenchymal progenitors similar to the term gestation lung. Treatment with ACS in the setting of inflammation may result in early respiratory advantage to preterm infants, but this advantage may come at a risk of abnormal extracellular matrix development, which may be associated with increased risk of chronic lung disease
Recommended from our members
Prenatal inflammation enhances antenatal corticosteroid-induced fetal lung maturation.
Respiratory complicˆations are the major cause of morbidity and mortality among preterm infants, which is partially prevented by the administration of antenatal corticosteroids (ACS). Most very preterm infants are exposed to chorioamnionitis, but short- and long-term effects of ACS treatment in this setting are not well defined. In low-resource settings, ACS increased neonatal mortality by perhaps increasing infection. We report that treatment with low-dose ACS in the setting of inflammation induced by intraamniotic lipopolysaccharide (LPS) in rhesus macaques improves lung compliance and increases surfactant production relative to either exposure alone. RNA sequencing shows that these changes are mediated by suppression of proliferation and induction of mesenchymal cellular death via TP53. The combined exposure results in a mature-like transcriptomic profile with inhibition of extracellular matrix development by suppression of collagen genes COL1A1, COL1A2, and COL3A1 and regulators of lung development FGF9 and FGF10. ACS and inflammation also suppressed signature genes associated with proliferative mesenchymal progenitors similar to the term gestation lung. Treatment with ACS in the setting of inflammation may result in early respiratory advantage to preterm infants, but this advantage may come at a risk of abnormal extracellular matrix development, which may be associated with increased risk of chronic lung disease