618 research outputs found

    A Method To Characterize Metalenses For Light Collection Applications

    Full text link
    Metalenses and metasurfaces are promising emerging technologies that could improve light collection in light collection detectors, concentrating light on small area photodetectors such as silicon photomultipliers. Here we present a detailed method to characterize metalenses to assess their efficiency at concentrating monochromatic light coming from a wide range of incidence angles, not taking into account their imaging quality

    Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis

    Get PDF
    The dynamic nature of gene regulatory networks allows cells to rapidly respond to environmental change. However, the underlying temporal connections are missed, even in kinetic studies, as transcription factor (TF) binding within at least one time point is required to identify primary targets. The TF-regulated but unbound genes are dismissed as secondary targets. Instead, we report that these genes comprise transient TF-target interactions most relevant to rapid signal transduction. We temporally perturbed a master TF (Basic Leucine Zipper 1, bZIP1) and the nitrogen (N) signal it transduces and integrated TF regulation and binding data from the same cell samples. Our enabling approach could identify primary TF targets based solely on gene regulation, in the absence of TF binding. We uncovered three classes of primary TF targets: (i) poised (TF-bound but not TF-regulated), (ii) stable (TF-bound and TF-regulated), and (iii) transient (TF-regulated but not TF-bound), the largest class. Unexpectedly, the transient bZIP1 targets are uniquely relevant to rapid N signaling in planta, enriched in dynamic N-responsive genes, and regulated by TF and N signal interactions. These transient targets include early N responders nitrate transporter 2.1 and NIN-like protein 3, bound by bZIP1 at 1-5 min, but not at later time points following TF perturbation. Moreover, promoters of these transient targets are uniquely enriched with cis-regulatory motifs coinherited with bZIP1 binding sites, suggesting a recruitment role for bZIP1. This transient mode of TF action supports a classic, but forgotten, "hit-and-run" transcription model, which enables a "catalyst TF" to activate a large set of targets within minutes of signal perturbation

    Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate‐change‐concerned conservation plans effective

    Get PDF
    1. Informed decisions for the selection of protected areas (PAs) are grounded in two general problems in Operations Research: the minimum set covering problem (minCost), where a set of ecological constraints are established as conservation targets and the minimum cost PAs are found, and the maximal coverage problem (maxCoverage) where the constraint is uniquely economic (i.e., a fixed budget) and the goal is to maximize the number of species having conservation targets adequately covered. 2. We adjust minCost and maxCoverage to accommodate the dynamic effects of climate change on species’ ranges. The selection of sites is replaced by the selection of time-ordered sequences of sites (climate change corridors), and an estimate of the persistence of each species in corridors is calculated according to the expected suitability of each site in the respective time period and the capacity of species to disperse between consecutive sites along corridors. In these problems, conservation targets are expressed as desired (and attainable) species persistence levels. We also introduce a novel problem (minShortfall) that combines minCost and maxCoverage. Unlike these two problems, minShortfall allows persistence targets to be missed and minimizes the sum of those gaps (i.e., target shortfalls), subject to a limited budget. 3. We illustrate the three problems with a case study using climatic suitability estimates for ten mammal species in the Iberian Peninsula under a climate change scenario until 2080. We compare solutions of the three problems with respect to species persistence and PA costs, under distinct settings of persistence targets, number of target-fulfilled species, and budgets. The solutions from different problems differed with regard to the areas to prioritize, their timings and the species whose persistence targets were fulfilled. This analysis also allowed identifying groups of species sharing corridors in optimal solutions, thus allowing important financial savings in site protection. 4. We suggest that enhancing species persistence is an adequate approach to cope with habitat shifts due to climate change. We trust the three problems discussed can provide complementary and valuable support for planners to anticipate decisions in order that the negative effects of climate change on species’ persistence are minimized

    Measurement of radon-induced backgrounds in the NEXT double beta decay experiment

    Get PDF
    The measurement of the internal 222^{222}Rn activity in the NEXT-White detector during the so-called Run-II period with 136^{136}Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by 222^{222}Rn and its alpha-emitting progeny. The specific activity is measured to be (38.1±2.2 (stat.)±5.9 (syst.))(38.1\pm 2.2~\mathrm{(stat.)}\pm 5.9~\mathrm{(syst.)})~mBq/m3^3. Radon-induced electrons have also been characterized from the decay of the 214^{214}Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.1~counts/yr in the neutrinoless double beta decay sample.Comment: 28 pages, 10 figures, 6 tables. Version accepted for publication in JHE

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
    corecore