1,295 research outputs found

    Risk factors for death in hospitalized dysentery patients in Rwanda.

    Get PDF
    To evaluate the management of severe dysentery cases in in-patient facilities during an epidemic of Shigella dysenteriae type 1 (Sd1), and to identify the factors associated with the risk of death, we conducted a prospective cohort study in 10 Rwandese hospitals between September and December 1994. Data were obtained from 849 cases admitted to hospitals with diarrhoea and visible blood in stools. The proportion of patients with persistent bloody diarrhoea was 51.0% at treatment day 3 and 27.9% at treatment day 5. At discharge, 79.9% had improved or were cured. The case fatality ratio was 13.2%, higher for patients treated with nalidixic acid than for those treated with ciprofloxacin (12.2% vs. 2.2%, RR = 5.80, 95% CI = 0.83-40.72). In a logistic regression model three risk factors were significantly associated with an increased risk of death during hospitalization: severe dehydration on admission (adjusted OR = 2.79, 95% CI = 1.46-5.33), age over 50 (adjusted OR vs. 5-49 age group = 3.22, 95% CI = 1.70-6.11) and prescription of nalidixic acid (adjusted OR vs. ciprofloxacin = 8.66, 95% CI = 1.08-69.67). Those results were consistent with reported high levels of resistance of Sd1 to the commonest antibiotics, including nalidixic acid. Patients belonging to groups with a higher risk of dying should be given special medical attention and supportive care. In areas of high resistance to nalidixic acid, severe cases of dysentery should be treated with fluoroquinolones in order to reduce the mortality associated with these epidemics

    Stochastic semi-continuous simulation for extreme flood estimation in catchments with combined rainfall–snowmelt flood regimes

    Get PDF
    Simulation methods for extreme flood estimation represent an important complement to statistical flood frequency analysis because a spectrum of catchment conditions potentially leading to extreme flows can be assessed. In this paper, stochastic, semi-continuous simulation is used to estimate extreme floods in three catchments located in Norway, all of which are characterised by flood regimes in which snowmelt often has a significant role. The simulations are based on SCHADEX, which couples a precipitation probabilistic model with a hydrological simulation such that an exhaustive set of catchment conditions and responses is simulated. The precipitation probabilistic model is conditioned by regional weather patterns, and a bottom–up classification procedure was used to define a set of weather patterns producing extreme precipitation in Norway. SCHADEX estimates for the 1000-year (Q1000) discharge are compared with those of several standard methods, including event-based and long-term simulations which use a single extreme precipitation sequence as input to a hydrological model, statistical flood frequency analysis based on the annual maximum series, and the GRADEX method. The comparison suggests that the combination of a precipitation probabilistic model with a long-term simulation of catchment conditions, including snowmelt, produces estimates for given return periods which are more in line with those based on statistical flood frequency analysis, as compared with the standard simulation methods, in two of the catchments. In the third case, the SCHADEX method gives higher estimates than statistical flood frequency analysis and further suggests that the seasonality of the most likely Q1000 events differs from that of the annual maximum flows. The semi-continuous stochastic simulation method highlights the importance of considering the joint probability of extreme precipitation, snowmelt rates and catchment saturation states when assigning return periods to floods estimated by precipitation-runoff methods. The SCHADEX methodology, as applied here, is dependent on observed discharge data for calibration of a hydrological model, and further study to extend its application to ungauged catchments would significantly enhance its versatility

    Geochemistry and mineral formation in the earth surface

    Get PDF

    The structure of casein in heated suspensions affects the acid gelification of milk

    Get PDF
    The structure of casein in heated suspensions affects the acid gelification of milk. FIL-IDF "Fermented milk

    Updated Marine Mammal Distribution and Abundance Estimates in British Columbia

    Get PDF
    Information relating to the distribution and abundance of species is critical for effective conservation and management. For many species, including cetacean species of conservation concern, abundance estimates are lacking, out of date and/or highly uncertain. Systematic, line-transect marine mammal surveys were conducted in British Columbia’s (BC) coastal waters over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007). In total, 10,057km of transects were surveyed in an 83,547km2 study area. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. The summer abundance estimates (with lower and upper 95% confidence intervals; all DSM method unless otherwise stated), assuming certain trackline detection (underestimates true population size) were: harbour porpoise (Phocoena phocoena) 8,091 (4,885–13,401); Dall’s porpoise (Phocoenoides dalli) 5,303 (4,638–6,064); Pacific white-sided dolphin (Lagenorhynchus obliquidens) 22,160 (16,522–29,721); humpback whale (Megaptera novaeangliae) 1,092 (993–1,200); fin whale (Balaenoptera physalus) 329 (274–395); killer whale (all ecotypes; Orcinus orca), 371 (222–621); common minke whale (B. acutorostrata) 522 (295–927); harbour seal (total; Phoca vitulina) 24,916 (19,666–31,569); Steller sea lion (total; Eumetopias jubatus) 4,037 (1,100–14,815); and northern elephant seal (CDS method; Mirounga angustirostris) 65 (35–121). Abundance estimates are provided on a stratum-specific basis with additional estimates provided for Steller sea lions and harbour seals that were ‘hauled out’ and ‘in water’. This analysis updates previous estimates by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters

    Migrant Semipalmated Sandpipers (Calidris pusilla) Have Over Four Decades Steadily Shifted Towards Safer Stopover Locations

    Get PDF
    Peregrine falcons (Falco peregrinus) have undergone a steady hemisphere-wide recovery since the ban on DDT in 1973, resulting in an ongoing increase in the level of danger posed for migrant birds, such as Arctic-breeding sandpipers. We anticipate that in response migrant semipalmated sandpipers (Calidris pusilla) have adjusted migratory behavior, including a shift in stopover site usage toward locations offering greater safety from falcon predation. We assessed semipalmated sandpiper stopover usage within the Atlantic Canada Shorebird Survey dataset. Based on 3,030 surveys (totalling ~32M birds) made during southward migration, 1974–2017, at 198 stopover locations, we assessed the spatial distribution of site usage in each year (with a “priority matching distribution” index, PMD) in relation to the size (intertidal area) and safety (proportion of a site\u27s intertidal area further than 150 m of the shoreline) of each location. The PMD index value is >1 when usage is concentrated at dangerous locations, 1.0 when usage matches location size, and <1 when usage is concentrated at safer locations. A large majority of migrants were found at the safest sites in all years, however our analysis of the PMD demonstrated that the fraction using safer sites increased over time. In 1974, 80% of birds were found at the safest 20% of the sites, while in 2017, this had increased to 97%. A sensitivity analysis shows that the shift was made specifically toward safer (and not just larger) sites. The shift as measured by a PMD index decline cannot be accounted for by possible biases inherent in the data set. We conclude that the data support the prediction that increasing predator danger has induced a shift by southbound migrant semipalmated sandpipers to safer sites
    • 

    corecore