609 research outputs found

    Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    Full text link
    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-derived parameters for the primitive model and the Lennard-Jones model with Lorentz-Berthelot mixing rules. The resulting parameters successfully reproduce the lattice properties used to derive them and are free from the influence of any water model. To assess the transferability of the Lennard-Jones parameters to aqueous systems, we used them to estimate hydration free energies and found that the results were in quantitative agreement with experimentally measured values. These lattice-derived parameters are applicable in simulations where coupling of ion parameters to a particular solvent model is undesirable. The simplicity and low computational demands of the calibration procedure make it suitable for parametrization of crystallizable ions in a variety of force fields.Comment: 9 pages, 5 table

    Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions

    Get PDF
    Positive selection in the two-domain type 1 pilus adhesin FimH enhances Escherichia coli fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically modulate the equilibrium between these two conformational states, each of which engages mannose through distinct binding orientations. A FimH variant that only adopts the R state is severely attenuated early in a mouse model of uncomplicated UTI but is proficient at colonizing catheterized bladders in vivo or bladder transitional-like epithelial cells in vitro. Thus, the bladder habitat has barrier(s) to R state–mediated colonization possibly conferred by the terminally differentiated bladder epithelium and/or decoy receptors in urine. Together, our studies reveal the conformational landscape in solution, binding mechanisms, and adhesive strength of an allosteric two-domain adhesin that evolved “moderate” affinity to optimize persistence in the bladder during UTI

    Occurrence of cowpea aphid-borne mosaic virus in peanut in Brazil

    Get PDF
    Surveys of groundnut crops in northeastern Brazil since 1995 showed the occurrence of a hitherto unreported virus disease. Characteristic leaf symptoms were ring spots and blotches. The virus was seed transmitted in groundnut (1/610) and cowpea (47/796). Local and systemic symptoms were observed in cowpea (cv. TVu 3433) known to be susceptible to most cowpea aphid-borne mosaic virus (CABMV) isolates. The virus was transmitted by aphids Toxoptera citricidus and Aphis gossypii. Using degenerate primers, the 3′ terminal region of the viral genome was cloned and sequenced. Sequence analyses of the coat protein and the 3′ untranslated region indicated that the potyvirus was most closely related to CABMV isolates from South Africa, Zimbabwe, and the United States. On the basis of genome analysis, the virus was identified as CABMV. The natural occurrence of CABMV on groundnut has so far not been reported. The significance of this finding especially for germplasm exchange is discusse

    A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Get PDF
    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV hardware

    Probabilistic Structural Analysis Program

    Get PDF
    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements

    TL1A Selectively Enhances IL-12/IL-18-Induced NK Cell Cytotoxicity against NK-Resistant Tumor Targets

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Introduction TL1A (TNFSF15) augments IFN-Îł production by IL-12/IL-18 responsive human T cells. Its ligand, death domain receptor 3 (DR3), is induced by activation on T and NK cells. Although IL-12/IL-18 induces DR3 expression on most NK cells, addition of TL1A minimally increases IFN-

    World Society for Virology first international conference: Tackling global virus epidemics

    Get PDF
    This communication summarizes the presentations given at the 1st international conference of the World Society for Virology (WSV) held virtually during 16–18 June 2021, under the theme of tackling global viral epidemics. The purpose of this biennial meeting is to foster international collaborations and address important viral epidemics in different hosts. The first day included two sessions exclusively on SARS-CoV-2 and COVID-19. The other two days included one plenary and three parallel sessions each. Last not least, 16 sessions covered 140 on-demand submitted talks. In total, 270 scientists from 49 countries attended the meeting, including 40 invited keynote speakers.Peer reviewe

    On the security of consumer wearable devices in the Internet of Things

    Get PDF
    Miniaturization of computer hardware and the demand for network capable devices has resulted in the emergence of a new class of technology called wearable computing. Wearable devices have many purposes like lifestyle support, health monitoring, fitness monitoring, entertainment, industrial uses, and gaming. Wearable devices are hurriedly being marketed in an attempt to capture an emerging market. Owing to this, some devices do not adequately address the need for security. To enable virtualization and connectivity wearable devices sense and transmit data, therefore it is essential that the device, its data and the user are protected. In this paper the use of novel Integrated Circuit Metric (ICMetric) technology for the provision of security in wearable devices has been suggested. ICMetric technology uses the features of a device to generate an identification which is then used for the provision of cryptographic services. This paper explores how a device ICMetric can be generated by using the accelerometer and gyroscope sensor. Since wearable devices often operate in a group setting the work also focuses on generating a group identification which is then used to deliver services like authentication, confidentiality, secure admission and symmetric key generation. Experiment and simulation results prove that the scheme offers high levels of security without compromising on resource demands
    • …
    corecore