107 research outputs found
Recommended from our members
A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part I: interannual variability
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951–2007 high-resolution precipitation observations over China in all seasons. Instead of maximizing the explained space–time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. The EOT method is validated by the reproduction of known relationships to the El Niño Southern Oscillation (ENSO): high positive correlations with ENSO are found in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that wintertime rainfall variability along the southeast coast is associated with anomalous convection over the tropical eastern Atlantic and communicated to China through a zonal wavenumber-three Rossby wave. Furthermore, spring rainfall variability in the Yangtze valley is related to upper-tropospheric midlatitude perturbations that are part of a Rossby wave pattern with its origin in the North Atlantic. A circumglobal wave pattern in the northern hemisphere is also associated with autumn precipitation variability in eastern areas. The analysis is objective, comprehensive, and produces timeseries that are tied to specific locations in China. This facilitates the interpretation of associated dynamical processes, is useful for understanding the regional hydrological cycle, and allows the results to serve as a benchmark for assessing general circulation models
A Single Base-Pair Change in 2009 H1N1 Hemagglutinin Increases Human Receptor Affinity and Leads to Efficient Airborne Viral Transmission in Ferrets
The 2009 H1N1 influenza A virus continues to circulate among the human population as the predominant H1N1 subtype. Epidemiological studies and airborne transmission studies using the ferret model have shown that the transmission efficiency of 2009 H1N1 viruses is lower than that of previous seasonal strains and the 1918 pandemic H1N1 strain. We recently correlated this reduced transmission efficiency to the lower binding affinity of the 2009 H1N1 hemagglutinin (HA) to α2→6 sialylated glycan receptors (human receptors). Here we report that a single point mutation (Ile219→Lys; a base pair change) in the glycan receptor-binding site (RBS) of a representative 2009 H1N1 influenza A virus, A/California/04/09 or CA04/09, quantitatively increases its human receptor-binding affinity. The increased human receptor-affinity is in the same range as that of the HA from highly transmissible seasonal and 1918 pandemic H1N1 viruses. Moreover, a 2009 H1N1 virus carrying this mutation in the RBS (generated using reverse genetics) transmits efficiently in ferrets by respiratory droplets thereby reestablishing our previously observed correlation between human receptor-binding affinity and transmission efficiency. These findings are significant in the context of monitoring the evolution of the currently circulating 2009 H1N1 viruses
Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets
AbstractAfter their disappearance from the human population in 1968, influenza H2 viruses have continued to circulate in the natural avian reservoir. The isolation of this virus subtype from multiple bird species as well as swine highlights the need to better understand the potential of these viruses to spread and cause disease in humans. Here we analyzed the virulence, transmissibility and receptor-binding preference of two avian influenza H2 viruses (H2N2 and H2N3) and compared them to a swine H2N3 (A/swine/Missouri/2124514/2006 [swMO]), and a human H2N2 (A/England/10/1967 [Eng/67]) virus using the ferret model as a mammalian host. Both avian H2 viruses possessed the capacity to spread efficiently between cohoused ferrets, and the swine (swMO) and human (Eng/67) viruses transmitted to naïve ferrets by respiratory droplets. Further characterization of the swMO hemagglutinin (HA) by x-ray crystallography and glycan microarray array identified receptor-specific adaptive mutations. As influenza virus quasispecies dynamics during transmission have not been well characterized, we sequenced nasal washes collected during transmission studies to better understand experimental adaptation of H2 HA. The avian H2 viruses isolated from ferret nasal washes contained mutations in the HA1, including a Gln226Leu substitution, which is a mutation associated with α2,6 sialic acid (human-like) binding preference. These results suggest that the molecular structure of HA in viruses of the H2 subtype continue to have the potential to adapt to a mammalian host and become transmissible, after acquiring additional genetic markers
Increasing precision during neuromodulator injections for frontal rhytids—Using ultrasound imaging to identify the line of convergence
Background: Recent research introduced the concept of the “line of convergence” as a guide for injectors to enhance precision and avoid complications when treating the frontalis muscle with toxins. However, currently, no pre-injection ultrasound scanning is employed to increase precision and reduce adverse events when searching for the line of convergence. Objective: To explore the feasibility and practicality of implementing pre-injection ultrasound scanning into aesthetic neuromodulator treatments of the forehead. Methods: The sample of this study consisted of n = 55 volunteers (42 females and 13 males), with a mean age of 42.24 (10.3) years and a mean BMI of 25.07 (4.0) kg/m2. High-frequency ultrasound imaging was utilized to measure the thickness, length, and contractility of the frontal soft tissue and to determine the precise location of the line of convergence during maximal frontalis muscle contraction. Results: The results revealed that the line of convergence was located at 58.43% (8.7) of the total forehead height above the superior border of the eyebrow cilia without a statistically significant difference between sex, age, or BMI. With frontalis muscle contraction, the forehead shortens in males by 25.90% (6.5), whereas in females it shortens only by 21.74% (5.1), with p < 0.001 for sex differences. Conclusion: This study demonstrated the feasibility and practicality of pre-injection ultrasound scanning for facial aesthetic neuromodulator treatments. Knowing the location of the line of convergence, injectors can determine precisely and on an individual basis where to administer the neuromodulator deep or superficial or when the injection location is at risk to cause eyebrow ptosis.</p
Pathogenesis and transmission of swine origin A(H3N2)v influenza viruses in ferrets
Recent isolation of a novel swine-origin influenza A H3N2 variant virus [A(H3N2)v] from humans in the United States has raised concern over the pandemic potential of these viruses. Here, we analyzed the virulence, transmissibility, and receptor-binding preference of four A(H3N2)v influenza viruses isolated from humans in 2009, 2010, and 2011. High titers of infectious virus were detected in nasal turbinates and nasal wash samples of A(H3N2)v-inoculated ferrets. All four A(H3N2)v viruses possessed the capacity to spread efficiently between cohoused ferrets, and the 2010 and 2011 A(H3N2)v isolates transmitted efficiently to naïve ferrets by respiratory droplets. A dose-dependent glycan array analysis of A(H3N2)v showed a predominant binding to α2-6–sialylated glycans, similar to human-adapted influenza A viruses. We further tested the viral replication efficiency of A(H3N2)v viruses in a relevant cell line, Calu-3, derived from human bronchial epithelium. The A(H3N2)v viruses replicated in Calu-3 cells to significantly higher titers compared with five common seasonal H3N2 influenza viruses. These findings suggest that A(H3N2)v viruses have the capacity for efficient replication and transmission in mammals and underscore the need for continued public health surveillance.National Institutes of Health (U.S.) (GM 57073)Singapore-MIT Alliance for Research and Technolog
Single-Dose Mucosal Immunization with a Candidate Universal Influenza Vaccine Provides Rapid Protection from Virulent H5N1, H3N2 and H1N1 Viruses
The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd) expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic
Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice
available in PMC 2010 October 12Recent reports of mild to severe influenza-like illness in humans caused by a novel swine-origin 2009 A(H1N1) influenza virus underscore the need to better understand the pathogenesis and transmission of these viruses in mammals. In this study, selected 2009 A(H1N1) influenza isolates were assessed for their ability to cause disease in mice and ferrets and compared with a contemporary seasonal H1N1 virus for their ability to transmit to naïve ferrets through respiratory droplets. In contrast to seasonal influenza H1N1 virus, 2009 A(H1N1) influenza viruses caused increased morbidity, replicated to higher titers in lung tissue, and were recovered from the intestinal tract of intranasally inoculated ferrets. The 2009 A(H1N1) influenza viruses exhibited less efficient respiratory droplet transmission in ferrets in comparison with the highly transmissible phenotype of a seasonal H1N1 virus. Transmission of the 2009 A(H1N1) influenza viruses was further corroborated by characterizing the binding specificity of the viral hemagglutinin to the sialylated glycan receptors (in the human host) by use of dose-dependent direct receptor-binding and human lung tissue–binding assays
Results from a Large, Multinational Sample Using the Childhood Trauma Questionnaire
Childhood maltreatment has diverse, lifelong impact on morbidity and
mortality. The Childhood Trauma Questionnaire (CTQ) is one of the most
commonly used scales to assess and quantify these experiences and their
impact. Curiously, despite very widespread use of the CTQ, scores on its
Minimization-Denial (MD) subscale—originally designed to assess a positive
response bias—are rarely reported. Hence, little is known about this measure.
If response biases are either common or consequential, current practices of
ignoring the MD scale deserve revision. Therewith, we designed a study to
investigate 3 aspects of minimization, as defined by the CTQ’s MD scale: 1)
its prevalence; 2) its latent structure; and finally 3) whether minimization
moderates the CTQ’s discriminative validity in terms of distinguishing between
psychiatric patients and community volunteers. Archival, item-level CTQ data
from 24 multinational samples were combined for a total of 19,652
participants. Analyses indicated: 1) minimization is common; 2) minimization
functions as a continuous construct; and 3) high MD scores attenuate the
ability of the CTQ to distinguish between psychiatric patients and community
volunteers. Overall, results suggest that a minimizing response bias—as
detected by the MD subscale—has a small but significant moderating effect on
the CTQ’s discriminative validity. Results also may suggest that some prior
analyses of maltreatment rates or the effects of early maltreatment that have
used the CTQ may have underestimated its incidence and impact. We caution
researchers and clinicians about the widespread practice of using the CTQ
without the MD or collecting MD data but failing to assess and control for its
effects on outcomes or dependent variables
Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.National Institute of General Medical Sciences (U.S.) (GM57073)National Institute of General Medical Sciences (U.S.) (U54 GM62116)Singapore. Agency for Science, Technology and ResearchSingapore-MIT Alliance for Research and Technolog
- …