258 research outputs found

    Numerical Analysis of a New Mixed Formulation for Eigenvalue Convection-Diffusion Problems

    Get PDF
    A mixed formulation is proposed and analyzed mathematically for coupled convection-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore a new convection-diffusion operator, the properties of which are mathematically studied: its symmetry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization

    Nature of the Evidence Base and Approaches to Guide Nutrition Interventions for Individuals: A Position Paper From the Academy of Nutrition Sciences

    Get PDF
    This Position Paper from the Academy of Nutrition Sciences is the third in a series which describe the nature of the scientific evidence and frameworks that underpin nutrition recommendations for health. This paper focuses on evidence which guides the application of dietary recommendations for individuals. In some situations, modified nutrient intake becomes essential to prevent deficiency, optimise development and health, or manage symptoms and disease progression. Disease and its treatment can also affect taste, appetite and ability to access and prepare foods, with associated financial impacts. Therefore, the practice of nutrition and dietetics must integrate and apply the sciences of food, nutrition, biology, physiology, behaviour, management, communication and society to achieve and maintain human health. Thus, there is huge complexity in delivering evidence-based nutrition interventions to individuals. This paper examines available frameworks for appraising the quality and certainty of nutrition research evidence, the development nutrition practice guidelines to support evidence implementation in practice and the influence of other sources of nutrition information and misinformation. The paper also considers major challenges in applying research evidence to an individual and suggests consensus recommendations to begin to address these challenges in the future. Our recommendations target three groups; those who deliver nutrition interventions to individuals, those funding, commissioning or undertaking research aimed at delivering evidence-based nutrition practice, and those disseminating nutritional information to individuals

    Nature of the evidence base and approaches to guide nutrition interventions for individuals: a position paper from the Academy of Nutrition Sciences

    Get PDF
    © 2024 The Author(s). Published by Cambridge University Press on behalf of The Nutrition Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/This Position Paper from the Academy of Nutrition Sciences is the third in a series which describe the nature of the scientific evidence and frameworks that underpin nutrition recommendations for health. This paper focuses on evidence which guides the application of dietary recommendations for individuals. In some situations, modified nutrient intake becomes essential to prevent deficiency, optimise development and health, or manage symptoms and disease progression. Disease and its treatment can also affect taste, appetite, and ability to access and prepare foods, with associated financial impacts. Therefore, the practice of nutrition and dietetics must integrate and apply the sciences of food, nutrition, biology, physiology, behaviour, management, communication, and society to achieve and maintain human health. Thus, there is huge complexity in delivering evidence-based nutrition interventions to individuals. This paper examines available frameworks for appraising the quality and certainty of nutrition research evidence, the development nutrition practice guidelines to support evidence implementation in practice, and the influence of other sources of nutrition information and misinformation. The paper also considers major challenges in applying research evidence to an individual and suggests consensus recommendations to begin to address these challenges for the future. Our recommendations target three groups; those who deliver nutrition interventions to individuals, those funding, commissioning, or undertaking research aimed at delivering evidence-based nutrition practice, and those disseminating nutritional information to individuals.Peer reviewe

    A Reference Architecture for Management of Security Operations in Digital Service Chains

    Get PDF
    Modern computing paradigms (i.e., cloud, edge, Internet of Things) and ubiquitous connectivity have brought the notion of pervasive computing to an unforeseeable level, which boosts service-oriented architectures and microservices patterns to create digital services with data-centric models. However, the resulting agility in service creation and management has not been followed by a similar evolution in cybersecurity patterns, which still largely rest on more conventional device- and infrastructure-centric models. In this Chapter, we describe the implementation of the GUARD Platform, which represents the core element of a modern cybersecurity framework for building detection and analytics services for complex digital service chains. We briefly review the logical components and how they address scientific and technological challenges behind the limitations of existing cybersecurity tools. We also provide validation and performance analysis that show the feasibility and efficiency of our implementation

    Towards a Collection of Security and Privacy Patterns

    Get PDF
    Security and privacy (SP)-related challenges constitute a significant barrier to the wider adoption of Internet of Things (IoT)/Industrial IoT (IIoT) devices and the associated novel applications and services. In this context, patterns, which are constructs encoding re-usable solutions to common problems and building blocks to architectures, can be an asset in alleviating said barrier. More specifically, patterns can be used to encode dependencies between SP properties of individual smart objects and corresponding properties of orchestrations (compositions) involving them, facilitating the design of IoT solutions that are secure and privacy-aware by design. Motivated by the above, this work presents a survey and taxonomy of SP patterns towards the creation of a usable pattern collection. The aim is to enable decomposition of higher-level properties to more specific ones, matching them to relevant patterns, while also creating a comprehensive overview of security- and privacy-related properties and sub-properties that are of interest in IoT/IIoT environments. To this end, the identified patterns are organized using a hierarchical taxonomy that allows their classification based on provided property, context, and generality, while also showing the relationships between them. The two high-level properties, Security and Privacy, are decomposed to a first layer of lower-level sub-properties such as confidentiality and anonymity. The lower layers of the taxonomy, then, include implementation-level enablers. The coverage that these patterns offer in terms of the considered properties, data states (data in transit, at rest, and in process), and platform connectivity cases (within the same IoT platform and across different IoT platforms) is also highlighted. Furthermore, pointers to extensions of the pattern collection to include additional patterns and properties, including Dependability and Interoperability, are given. Finally, to showcase the use of the presented pattern collection, a practical application is detailed, involving the pattern-driven composition of IoT/IIoT orchestrations with SP property guarantees
    corecore