60 research outputs found

    A de novo 2.9 Mb interstitial deletion at 13q12.11 in a child with developmental delay accompanied by mild dysmorphic characteristics

    Get PDF
    Background: Proximal deletions in the 13q12.11 region are very rare. Much larger deletions including this region have been described and are associated with complex phenotypes of mental retardation, developmental delay and various others anomalies. Results: We report on a 3-year-old girl with a rare 2.9 Mb interstitial deletion at 13q12.11 due to a de novo unbalanced t(13;14) translocation. She had mild mental retardation and relatively mild dysmorphic features such as microcephaly, flat nasal bridge, moderate micrognathia and clinodactyly of 5th finger. Molecular karyotyping revealed a deletion on the long arm of chromosome 13 as involving sub-bands 13q12.11, a deletion of about 2.9 Mb. Discussion: The clinical application of array-CGH has made it possible to detect submicroscopical genomic rearrangements that are associated with varying phenotypes.The description of more patients with deletions of the 13q12.11 region will allow a more precise genotype-phenotype correlation

    COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing

    Get PDF
    Background Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour. Methods LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces). Findings 4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1–6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20–0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4–84.3). Interpretation Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission. Funding Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research

    A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2

    No full text
    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2

    A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2

    No full text
    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2. © 2012 Elsevier Masson SAS

    De novo 15.5-Mb interstitial deletion in 5p in a male ascertained by Oligospermia

    No full text
    We describe a case of a 34-year-old male presenting with oligospermia and an otherwise normal phenotype. Investigation with array-based comparative genomic hybridization (aCGH) revealed an interstitial deletion of about 15.5 Mb in chromosome 5p13.3p14.3. We compared the phenotype of our patient with recently reported patients studied by aCGH, who show an overlapping deletion. We also analyzed the gene content of the deleted region in order to propose a possible involvement of specific genes in the clinical phenotype. Copyright © 2013 S. Karger AG, Basel

    De novo 15.5-Mb interstitial deletion in 5p in a male ascertained by oligospermia

    No full text
    We describe a case of a 34-year-old male presenting with oligospermia and an otherwise normal phenotype. Investigation with array-based comparative genomic hybridization (aCGH) revealed an interstitial deletion of about 15.5 Mb in chromosome 5p13.3p14.3. We compared the phenotype of our patient with recently reported patients studied by aCGH, who show an overlapping deletion. We also analyzed the gene content of the deleted region in order to propose a possible involvement of specific genes in the clinical phenotype

    Deletion of 4.4 Mb at 2q33.2q33.3 May Cause Growth Deficiency in a Patient with Mental Retardation, Facial Dysmorphic Features and Speech Delay

    No full text
    A patient with a rare interstitial deletion of chromosomal band 2q33.2q33.3 is described. The clinical features resembled the 2q33.1 microdeletion syndrome (Glass syndrome), including mental retardation, facial dysmorphism, high-arched narrow palate, growth deficiency, and speech delay. The chromosomal aberration was characterized by whole genome BAC aCGH. A comparison of the current patient and Glass syndrome features revealed that this case displayed a relatively mild phenotype. Overall, it is suggested that the deleted region of 2q33 causative for Glass syndrome may be larger than initially suggested. © 2015 S. Karger AG, Basel

    Non-invasive prenatal screening versus prenatal diagnosis by array comparative genomic hybridization: a comparative retrospective study

    No full text
    Objective: To calculate the proportion of array comparative genomic hybridization (aCGH) pathogenic results, that would not be detectable by non-invasive prenatal screening (NIPS). Methods: This is a comparative study using data from 2779 fetuses, which underwent invasive prenatal diagnosis, and the samples were analyzed using aCGH. The simulated NIPS assay would test for trisomies 21, 18, 13, monosomy X, 47, XXX, 47, XYY, and 47, XXY. Indications for invasive testing were grouped into categories and the absolute, relative rates of pathogenic/likely pathogenic results of aCGH analysis that would not be detectable by NIPS were calculated. Results: The expected rate of aCGH-detected abnormalities that would not be detectable by NIPS was 28.0% (95% CI 14.3–47.6) for nuchal translucency (NT) 95 to 99th centile; 14.3% (95% 5.0–34.6) for NT > 99th centile; 34.2% (95% CI 21.1–50.1) for high-risk first-trimester results (regardless of NT); 52.4% (95% CI 32.4–71.7) for second-trimester markers; and 50.0% (95% CI 26.8–73.2) for advanced maternal age. The overall rate of aCGH pathogenic/likely pathogenic results was 5.0% and 44.0% (95% CI 36.0–52.2) of them would not be detected by NIPS. Conclusions: Approximately half of the abnormal aCGH results would not be detectable by standard NIPS assays, highlighting the necessity of pre-test counseling, and illustrating the limitations of NIPS. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd
    corecore