24 research outputs found

    Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic

    Get PDF
    BACKGROUND: Debated aspects in speciation research concern the amount of gene flow between incipient species under secondary contact and the modes by which post-zygotic isolation accumulates. Secondary contact zones of allopatric lineages, involving varying levels of divergence, provide natural settings for comparative studies, for which the Aegean (Eastern Mediterranean) geography offers unique scenarios. In Palearctic green toads (Bufo viridis subgroup or Bufotes), Plio-Pleistocene (~ 2.6 Mya) diverged species show a sharp transition without contemporary gene flow, while younger lineages, diverged in the Lower-Pleistocene (~ 1.9 Mya), admix over tens of kilometers. Here, we conducted a fine-scale multilocus phylogeographic analysis of continental and insular green toads from the Aegean, where a third pair of taxa, involving Mid-Pleistocene diverged (~ 1.5 Mya) mitochondrial lineages, earlier tentatively named viridis and variabilis, (co-)occurs. RESULTS: We discovered a new lineage, endemic to Naxos (Central Cyclades), while coastal islands and Crete feature weak genetic differentiation from the continent. In continental Greece, both lineages, viridis and variabilis, form a hybrid swarm, involving massive mitochondrial and nuclear admixture over hundreds of kilometers, without obvious selection against hybrids. CONCLUSIONS: The genetic signatures of insular Aegean toads appear governed by bathymetry and Quaternary sea level changes, resulting in long-term isolation (Central Cyclades: Naxos) and recent land-bridges (coastal islands). Conversely, Crete has been isolated since the end of the Messinian salinity crisis (5.3 My) and Cretan populations thus likely result from human-mediated colonization, at least since Antiquity, from Peloponnese and Anatolia. Comparisons of green toad hybrid zones support the idea that post-zygotic hybrid incompatibilities accumulate gradually over the genome. In this radiation, only one million years of divergence separate a scenario of complete reproductive isolation, from a secondary contact resulting in near panmixia

    Poster display II clinical general

    Get PDF

    Methanol Oxidation at Platinum Coated Black Titania Nanotubes and Titanium Felt Electrodes

    No full text
    Optimized Pt-based methanol oxidation reaction (MOR) anodes are essential for commercial direct methanol fuel cells (DMFCs) and methanol electrolyzers for hydrogen production. High surface area Ti supports are known to increase Pt catalytic activity and utilization. Pt has been deposited on black titania nanotubes (bTNTs), Ti felts and, for comparison, Ti foils by a galvanic deposition process, whereby Pt(IV) from a chloroplatinate solution is spontaneously reduced to metallic Pt (at 65 ◦C) onto chemically reduced (by CaH2) TNTs (resulting in bTNTs), chemically etched (HCl + NaF) Ti felts and grinded Ti foils. All Pt/Ti-based electrodes prepared by this method showed enhanced intrinsic catalytic activity towards MOR when compared to Pt and other Pt/Ti-based catalysts. The very high/high mass specific activity of Pt/bTNTs (ca 700 mA mgPt−1 at the voltammetric peak of 5 mV s−1 in 0.5 M MeOH) and of Pt/Ti-felt (ca 60 mA mgPt−1, accordingly) make these electrodes good candidates for MOR anodes and/or reactive Gas Diffusion Layer Electrodes (GDLEs) in DMFCs and/or methanol electrolysis cells

    Methanol Oxidation at Platinum Coated Black Titania Nanotubes and Titanium Felt Electrodes

    No full text
    Optimized Pt-based methanol oxidation reaction (MOR) anodes are essential for commercial direct methanol fuel cells (DMFCs) and methanol electrolyzers for hydrogen production. High surface area Ti supports are known to increase Pt catalytic activity and utilization. Pt has been deposited on black titania nanotubes (bTNTs), Ti felts and, for comparison, Ti foils by a galvanic deposition process, whereby Pt(IV) from a chloroplatinate solution is spontaneously reduced to metallic Pt (at 65 ◦C) onto chemically reduced (by CaH2) TNTs (resulting in bTNTs), chemically etched (HCl + NaF) Ti felts and grinded Ti foils. All Pt/Ti-based electrodes prepared by this method showed enhanced intrinsic catalytic activity towards MOR when compared to Pt and other Pt/Ti-based catalysts. The very high/high mass specific activity of Pt/bTNTs (ca 700 mA mgPt−1 at the voltammetric peak of 5 mV s−1 in 0.5 M MeOH) and of Pt/Ti-felt (ca 60 mA mgPt−1, accordingly) make these electrodes good candidates for MOR anodes and/or reactive Gas Diffusion Layer Electrodes (GDLEs) in DMFCs and/or methanol electrolysis cells
    corecore