37 research outputs found

    Pain Behavior Changes Following Disc Puncture Relate to Nucleus Pulposus Rather than to the Disc Injury Per Se: An Experimental Study in Rats

    Get PDF
    It has previously been demonstrated that disc puncture in the rat induced changes in grooming and wet dog shakes, two behavioral changes that may be linked to discomfort and neuropathic pain. In this study the aim was to separate the effects of disc injury and the epidural presence of nucleus pulposus. Following anesthesia, the L4-5 disc was exposed using a dorsal approach. Ten rats received a superficial disc injury without nucleus pulposus leakage and ten rats received nucleus pulposus from a donor rat without disc injury. In ten animals the L4-5 disc was punctured using a ventral approach, with 10 corresponding controls. Spontaneous behavior was assessed after surgery. The data was matched to historical control of dorsal sham surgery and disc puncture. The study showed that the effects of nucleus pulposus were more pronounced than the effects induced by the disc injury. Ventral disc puncture did not induce any behavioral changes different from sham exposure. In conclusion, the data from the study indicate that behavioral changes induced by disc puncture are more likely to relate to the epidural presence of nucleus pulposus than the disc injury per se

    Subtypes of tachykinin receptors on tonic and phasic neurones in coeliac ganglion of the guinea-pig.

    No full text
    1. Intracellular recording techniques were used to investigate the characteristics of tachykinin receptors and their subtypes in tonic and phasic neurones, which constituted two major neuronal populations in the coeliac ganglion of the guinea-pig. 2. In 95% of phasic neurones a long-lasting after-hyperpolarization (LAH), 5-8 s in duration and 10-20 mV in amplitude, was observed following action potentials evoked by passing a train of depolarizing current pulses into the neurones. In contrast, LAH was observed in only 4% of tonic neurones. 3. In most tonic neurones, substance P (SP), neurokinin A (NKA) and senktide induced depolarizations, whereas in phasic neurones they usually inhibited LAH but rarely induced depolarization. 4. Tonic and phasic neurones were further classified into three groups based on their responses (depolarization for tonic neurones and LAH inhibition for phasic neurones) to these tachykinin receptor agonists: (1) neurones responsive to SP, NKA and senktide (71-78%); (2) those responsive to senktide but not to SP and NKA (12-23%) and (3) those not responsive to any of the three agonists (7-11%). 5. GR71251 (5 microM), an NK1-selective tachykinin receptor antagonist, depressed the depolarization in tonic neurones and the LAH inhibition in phasic neurones induced by SP and NKA, but not those induced by senktide. 6. Selective NK2 receptor agonists, [Nle10]NKA4-10, [beta-Ala8]NKA4-10 and GR64349, were without effect in both tonic and phasic neurones. Furthermore, an NK2 receptor antagonist, L659,877, did not inhibit the depolarization induced by NKA, SP or senktide in tonic neurones.(ABSTRACT TRUNCATED AT 250 WORDS
    corecore