2,434 research outputs found
Can Gravity Distinguish Between Dirac and Majorana Neutrinos?
We show that spin-gravity interaction can distinguish between Dirac and
Majorana neutrino wave packets propagating in a Lense-Thirring background.
Using time-independent perturbation theory and gravitational phase to generate
a perturbation Hamiltonian with spin-gravity coupling, we show that the
associated matrix element for the Majorana neutrino differs significantly from
its Dirac counterpart. This difference can be demonstrated through significant
gravitational corrections to the neutrino oscillation length for a two-flavour
system, as shown explicitly for SN1987A.Comment: 4 pages, 2 figures; minor changes of text; typo corrected; accepted
in Physical Review Letter
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
Fast reconnection operating in magnetically dominated plasmas is often
invoked in models for magnetar giant flares, for magnetic dissipation in pulsar
winds, or to explain the gamma-ray flares observed in the Crab nebula, hence
its investigation is of paramount importance in high-energy astrophysics. Here
we study, by means of two dimensional numerical simulations, the linear phase
and the subsequent nonlinear evolution of the tearing instability within the
framework of relativistic resistive magnetohydrodynamics, as appropriate in
situations where the Alfven velocity approaches the speed of light. It is found
that the linear phase of the instability closely matches the analysis in
classical MHD, where the growth rate scales with the Lundquist number S as
S^-1/2, with the only exception of an enhanced inertial term due to the thermal
and magnetic energy contributions. In addition, when thin current sheets of
inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal"
tearing regime is retrieved, with modes growing independently on S and
extremely fast, on only a few light crossing times of the sheet length. The
overall growth of fluctuations is seen to solely depend on the value of the
background Alfven velocity. In the fully nonlinear stage we observe an inverse
cascade towards the fundamental mode, with Petschek-type supersonic jets
propagating at the external Alfven speed from the X-point, and a fast
reconnection rate at the predicted value R~(ln S)^-1.Comment: 14 pages, 9 figures, accepted for publication (MNRAS
Activation of MHD reconnection on ideal timescales
Magnetic reconnection in laboratory, space and astrophysical plasmas is often
invoked to explain explosive energy release and particle acceleration. However,
the timescales involved in classical models within the macroscopic MHD regime
are far too slow to match the observations. Here we revisit the tearing
instability by performing visco-resistive two-dimensional numerical simulations
of the evolution of thin current sheets, for a variety of initial
configurations and of values of the Lunquist number , up to . Results
confirm that when the critical aspect ratio of is reached in the
reconnecting current sheets, the instability proceeds on ideal (Alfv\'enic)
macroscopic timescales, as required to explain observations. Moreover, the same
scaling is seen to apply also to the local, secondary reconnection events
triggered during the nonlinear phase of the tearing instability, thus
accelerating the cascading process to increasingly smaller spatial and temporal
scales. The process appears to be robust, as the predicted scaling is measured
both in inviscid simulations and when using a Prandtl number in the
viscous regime.Comment: Accepted for publication in Plasma Physics and Controlled Fusio
Thyroid nodules treated with percutaneous radiofrequency thermal ablation: a comparative study
Percutaneous radiofrequency thermal ablation (RTA) was reported as an effective tool for the management of thyroid nodules (TNs). The aim of this study was to investigate the effects of RTA and to establish whether they were treatment-related by comparison with a matched, untreated control group
Monitoring alkylphenols in water using the polar organic chemical integrative sampler (POCIS): determining sampling rates via the extraction of PES membranes and Oasis beads
Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a “pharmaceutical” POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log Kow between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (Rs) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log Kow < 4 were preferentially accumulated in Oasis beads, and compounds with log Kow > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log Kow ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log Kow ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log Kow ≥ 4), as well as hydrophilic APs, most effectively. © 2017 Elsevier Lt
The Sagnac Effect in curved space-times from an analogy with the Aharonov-Bohm Effect
In the context of the natural splitting, the standard relative dynamics can
be expressed in terms of gravito-electromagnetic fields, which allow to
formally introduce a gravito-magnetic Aharonov-Bohm effect. We showed elsewhere
that this formal analogy can be used to derive the Sagnac effect in flat
space-time as a gravito-magnetic Aharonov-Bohm effect. Here, we generalize
those results to study the General Relativistic corrections to the Sagnac
effect in some stationary and axially symmetric geometries, such as the
space-time around a weakly gravitating and rotating source, Kerr space-time,
G\"{odel} universe and Schwarzschild space-time.Comment: 14 pages, 1 EPS figure, LaTeX, accepted for publication in General
Relativity and Gravitatio
Spin-gravity coupling and gravity-induced quantum phases
External gravitational fields induce phase factors in the wave functions of
particles. The phases are exact to first order in the background gravitational
field, are manifestly covariant and gauge invariant and provide a useful tool
for the study of spin-gravity coupling and of the optics of particles in
gravitational or inertial fields. We discuss the role that spin-gravity
coupling plays in particular problems.Comment: 18 pages, 1 figur
Lower Neutrino Mass Bound from SN1987A Data and Quantum Geometry
A lower bound on the light neutrino mass is derived in the framework
of a geometrical interpretation of quantum mechanics. Using this model and the
time of flight delay data for neutrinos coming from SN1987A, we find that the
neutrino masses are bounded from below by eV, in
agreement with the upper bound
eV currently available. When the model is applied to photons with effective
mass, we obtain a lower limit on the electron density in intergalactic space
that is compatible with recent baryon density measurements.Comment: 22 pages, 3 figure
Homogeneously derived transit timings for 17 exoplanets and reassessed TTV trends for WASP-12 and WASP-4
19 pages, 4 figures, 6 tables; revised manuscript submitted to MNRAS; online-only supplements are in the download archiveWe homogeneously analyse ∼3.2 × 10 5 photometric measurements for ∼1100 transit light curves belonging to 17 exoplanet hosts. The photometric data cover 16 years (2004–2019) and include amateur and professional observations. Old archival light curves were reprocessed using up-to-date exoplanetary parameters and empirically debiased limb-darkening models. We also derive self-consistent transit and radial-velocity fits for 13 targets. We confirm the nonlinear transit timing variation (TTV) trend in the WASP-12 data at a high significance, and with a consistent magnitude. However, Doppler data reveal hints of a radial acceleration of about −7.5 ± 2.2 m s −1 yr −1, indicating the presence of unseen distant companions, and suggesting that roughly 10 per cent of the observed TTV was induced via the light-travel (or Roemer) effect. For WASP-4, a similar TTV trend suspected after the recent TESS observations appears controversial and model dependent. It is not supported by our homogeneous TTV sample, including 10 ground-based EXPANSION light curves obtained in 2018 simultaneously with TESS. Even if the TTV trend itself does exist in WASP-4, its magnitude and tidal nature are uncertain. Doppler data cannot entirely rule out the Roemer effect induced by possible distant companions.Peer reviewe
The Cosmic-Ray Proton and Helium Spectra measured with the CAPRICE98 balloon experiment
A new measurement of the primary cosmic-ray proton and helium fluxes from 3
to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998.
This experimental setup combines different detector techniques and has
excellent particle discrimination capabilities allowing clear particle
identification. Our experiment has the capability to determine accurately
detector selection efficiencies and systematic errors associated with them.
Furthermore, it can check for the first time the energy determined by the
magnet spectrometer by using the Cherenkov angle measured by the RICH detector
well above 20 GeV/n. The analysis of the primary proton and helium components
is described here and the results are compared with other recent measurements
using other magnet spectrometers. The observed energy spectra at the top of the
atmosphere can be represented by (1.27+-0.09)x10^4 E^(-2.75+-0.02) particles
(m^2 GeV sr s)^-1, where E is the kinetic energy, for protons between 20 and
350 GeV and (4.8+-0.8)x10^2 E^(-2.67+-0.06) particles (m^2 GeV nucleon^-1 sr
s)^-1, where E is the kinetic energy per nucleon, for helium nuclei between 15
and 150 GeV nucleon^-1.Comment: To be published on Astroparticle Physics (44 pages, 13 figures, 5
tables
- …
