3,328 research outputs found

    Integrated geophysical-petrological modeling of lithosphere-asthenosphere boundary in central Tibet using electromagnetic and seismic data

    Get PDF
    We undertake a petrologically driven approach to jointly model magnetotelluric (MT) and seismic surface wave dispersion (SW) data from central Tibet, constrained by topographic height. The approach derives realistic temperature and pressure distributions within the upper mantle and characterizes mineral assemblages of given bulk chemical compositions as well as water content. This allows us to define a bulk geophysical model of the upper mantle based on laboratory and xenolith data for the most relevant mantle mineral assemblages and to derive corresponding predicted geophysical observables. One-dimensional deep resistivity models were derived for two groups of MT stations. One group, located in the Lhasa Terrane, shows the existence of an electrically conductive upper mantle layer and shallower conductive upper mantle layer for the other group, located in the Qiangtang Terrane. The subsequent one-dimensional integrated petrological-geophysical modeling suggests a lithosphere-asthenosphere boundary (LAB) at a depth of 80¿120 km with a dry lithosphere for the Qiangtang Terrane. In contrast, for the Lhasa Terrane the LAB is located at about 180 km but the presence of a small amount of water in the lithospheric mantle (<0.02 wt%) is required to fit the longest period MT responses. Our results suggest two different lithospheric configurations beneath the southern and central Tibetan Plateau. The model for the Lhasa Terrane implies underthrusting of a moderately wet Indian plate. The model for the Qiangtang Terrane shows relatively thick and conductive crust and implies thin and dry Tibetan lithosphere.Peer Reviewe

    Radiofrequency map of an NMR coil by imaging

    Get PDF
    We propose a new imaging method to obtain a map of the radiofrequency (RF) field amplitude over a sample. The sequence contains three RF pulses (alpha, 2 alpha, and alpha) and produces two images by a classical spin echo and a stimulated echo. A third image is computed and gives the distribution of the flip angle alpha, and so the RF amplitude, over the sample. The accuracy of the flip angle determination is verified on an homogeneous sample and results show a good correlation between experimental and theoretical flip angles in the range of 50 degrees to 130 degrees. Experiments with a surface coil and a resonator show the method is available in an inhomogeneous RF field. Images obtained on the calf of a volunteer confirms the independence of the computed RF distribution from proton density, T1, or T2 contrast

    Acquisition of spin echo and stimulated echo by a single sequence: application to MRI of diffusion

    Get PDF
    A new method is described to measure the restricted diffusion coefficient with magnetic resonance imaging. The two images necessary to calculate the diffusion image are obtained with a simultaneous acquisition of a spin-echo and a stimulated echo, and so, in half the time needed by usual spin-echo or stimulated echo method. A different diffusion contrast is created on each echo. A map of an estimate of the diffusion coefficient and an estimation of T1 value are obtained with only one experiment. The accuracy of the method has been evaluated on phantom and results are in agreement with values found in previous papers and with measurements performed with a usual spin-echo method. Furthermore, in vivo measurements have shown that this method can be used without electrocardiogram triggering

    T1 mapping from spin echo and stimulated echoes

    Get PDF
    We present an imaging method to obtain a map of the spin-lattice relaxation time. Images were acquired with the same spatial resolution and in the same time as for a regular spin-echo acquisition. The sequence was based on the simultaneous acquisition of a spin echo and several stimulated echoes with the same intensity except for T1 weighting which increases with the interval between the excitation pulse and the readout pulse. T1 values obtained on phantoms were compared to those from the inversion-recovery method and show the accuracy (2%) and the precision (5%) of the method. T1 images of the brain of a healthy volunteer are presented and demonstrate the ability of the method to obtain T1 mapping in vivo in 12 min and without susceptibility artifacts. In vivo and in vitro results were compared to those obtained by a TOMROP sequence in the same acquisition time

    Neutron time-of-flight measurements of charged-particle energy loss in inertial confinement fusion plasmas

    Get PDF
    Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4  keV and particle densities of n≈(12-2)×10^{24}  cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data

    Preparative Isolation, Fast Centrifugal Partition Chromatography Purification and Biological Activity of Cajaflavanone from Derris ferruginea Stems

    Get PDF
    Introduction The Derris genus is known to contain flavonoid derivatives, including prenylated flavanones and isoflavonoids such as rotenoids, which are generally associated with significant biological activity. Objective To develop an efficient preparative isolation procedure for bioactive cajaflavanone. Methodology Fast centrifugal partition chromatography (FCPC) was optimised to purify cajaflavanone from Derris ferruginea stems in a single step as compared to fractionation from the cyclohexane extract by successive conventional solid–liquid chromatography procedures. The purification yield, purity, time and solvent consumption per procedure are described. The anti-fungal, anti-bacterial, anti-leishmanial, anti-plasmodial, anti-oxidant activities and the inhibition of advanced glycation end-products (AGEs) by cajaflavanone accumulation are described. Results FCPC enabled cajaflavanone purification in a single separation step, yielding sufficient quantities to perform in vitro biological screening. Interestingly, cajaflavanone had an inhibitory effect on the formation of AGEs, without displaying any in vitro anti-oxidant activity. Conclusion A simple and efficient procedure, in comparison with other preparative methods, for bioactive cajaflavone purification has been developed using FCPC

    SPECT/CT study of bronchial deposition of inhaled particles. A human aerosol vaccination model against HPV.

    Get PDF
    Vaccination by aerosol inhalation can be used to efficiently deliver antigen against HPV to mucosal tissue, which is particularly useful in developing countries (simplicity of administration, costs, no need for cold chain). For optimal immunological response, vaccine particles should preferentially be delivered to proximal bronchial airways. We aimed at quantifying the deposition of inhaled particles in central airways and peripheral lung, and to assess administration biosafety. Participants, methods: 20 healthy volunteers (13W/7M, aged 24±4y) performed a 10-min free-breathing inhalation of (99m)Tc-stannous chloride colloid aerosol (450 MBq) in a buffer solution without vaccinal particles using an ultrasonic nebulizer (mass median aerodynamic diameter 4.2 μm) and a double mask inside a biosafety cabinet dedicated to assess environmental particle release. SPECT/CT and whole-body planar scintigraphy were acquired to determine whole-body and regional C/P distribution ratio (central-to-peripheral pulmonary deposition counts). Using a phantom, SPECT sensitivity was calibrated to obtain absolute pulmonary activity deposited by inhalation. All participants successfully performed the inhalation that was well tolerated (no change in pulmonary peak expiratory flow rate, p = 0.9). It was environmentally safe (no activity released in the biosafety filter.) 1.3±0.6% (range 0.4-2.6%) of the total nebulizer activity was deposited in the lungs with a C/P distribution ratio of 0.40±0.20 (range 0.15-1.14). Quantification and regional distribution of inhaled particles in an aerosolized vaccine model is possible using radioactive particles. This will allow optimizing deposition parameters and determining the particles charge for active-particles vaccination

    The role of ongoing dendritic oscillations in single-neuron dynamics

    Get PDF
    The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic inputs into action potential output. Traditionally, these computations have been characterized as temporally local, near-instantaneous mappings from the current input of the cell to its current output, brought about by somatic summation of dendritic contributions that are generated in spatially localized functional compartments. However, recent evidence about the presence of oscillations in dendrites suggests a qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization. Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations, and the way these interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global temporal and spatial scales than previously thought

    Supersymmetry Without Prejudice at the LHC

    Full text link
    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (s=14\sqrt s=14 TeV, 1 fb1^{-1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of 71\sim 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 7171k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S>5S>5 in at least one of these 11 analyses assuming a 50\% systematic error on the SM background. If this systematic error can be reduced to only 20\% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.Comment: 69 pages, 40 figures, Discussion adde
    corecore