835 research outputs found

    Equivalence of Darmois-Israel and Distributional-Methods for Thin Shells in General Relativity

    Get PDF
    A distributional method to solve the Einstein's field equations for thin shells is formulated. The familiar field equations and jump conditions of Darmois-Israel formalism are derived. A carefull analysis of the Bianchi identities shows that, for cases under consideration, they make sense as distributions and lead to jump conditions of Darmois-Israel formalism.Comment: 17 pages Latex, no figures, to be published in Journ. Math. Phy

    Stationary and Axisymmetric Solutions of Higher-Dimensional General Relativity

    Full text link
    We study stationary and axisymmetric solutions of General Relativity, i.e. pure gravity, in four or higher dimensions. D-dimensional stationary and axisymmetric solutions are defined as having D-2 commuting Killing vector fields. We derive a canonical form of the metric for such solutions that effectively reduces the Einstein equations to a differential equation on an axisymmetric D-2 by D-2 matrix field living in three-dimensional flat space (apart from a subclass of solutions that instead reduce to a set of equations on a D-2 by D-2 matrix field living in two-dimensional flat space). This generalizes the Papapetrou form of the metric for stationary and axisymmetric solutions in four dimensions, and furthermore generalizes the work on Weyl solutions in four and higher dimensions. We analyze then the sources for the solutions, which are in the form of thin rods along a line in the three-dimensional flat space that the matrix field can be seen to live in. As examples of stationary and axisymmetric solutions, we study the five-dimensional rotating black hole and the rotating black ring, write the metrics in the canonical form and analyze the structure of the rods for each solution.Comment: 43 pages, v2: typos fixed, refs adde

    On the response of gravitational antennas to dilatonic waves

    Get PDF
    It is pointed out that the coupling of macroscopic test masses to the gravi-dilaton background of string theory is non geodesic, in general, and cannot be parametrized by a Brans-Dicke model of scalar-tensor gravity. The response of gravitational antennas to dilatonic waves should be analyzed through a generalized equation of geodesic deviation, taking into account the possible direct coupling of the background to the (composition-dependent) dilatonic charge of the antenna.Comment: 10 pages, Latex, no figure

    On asymptotically flat solutions of Einstein's equations periodic in time I. Vacuum and electrovacuum solutions

    Full text link
    By an argument similar to that of Gibbons and Stewart, but in a different coordinate system and less restrictive gauge, we show that any weakly-asymptotically-simple, analytic vacuum or electrovacuum solutions of the Einstein equations which are periodic in time are necessarily stationary.Comment: 25 pages, 2 figures, published in Class. Quant. Grav

    A Note on trapped Surfaces in the Vaidya Solution

    Full text link
    The Vaidya solution describes the gravitational collapse of a finite shell of incoherent radiation falling into flat spacetime and giving rise to a Schwarzschild black hole. There has been a question whether closed trapped surfaces can extend into the flat region (whereas closed outer trapped surfaces certainly can). For the special case of self-similar collapse we show that the answer is yes, if and only if the mass function rises fast enough.Comment: 14 pages, 4 figures; minor polish added to version

    Godel-type Metrics in Various Dimensions II: Inclusion of a Dilaton Field

    Full text link
    This is the continuation of an earlier work where Godel-type metrics were defined and used for producing new solutions in various dimensions. Here a simplifying technical assumption is relaxed which, among other things, basically amounts to introducing a dilaton field to the models considered. It is explicitly shown that the conformally transformed Godel-type metrics can be used in solving a rather general class of Einstein-Maxwell-dilaton-3-form field theories in D >= 6 dimensions. All field equations can be reduced to a simple "Maxwell equation" in the relevant (D-1)-dimensional Riemannian background due to a neat construction that relates the matter fields. These tools are then used in obtaining exact solutions to the bosonic parts of various supergravity theories. It is shown that there is a wide range of suitable backgrounds that can be used in producing solutions. For the specific case of (D-1)-dimensional trivially flat Riemannian backgrounds, the D-dimensional generalizations of the well known Majumdar-Papapetrou metrics of general relativity arise naturally.Comment: REVTeX4, 17 pp., no figures, a few clarifying remarks added and grammatical errors correcte

    BPS Force Balances via Spin-Spin Interactions

    Get PDF
    We study two systems of BPS solitons in which spin-spin interactions are important in establishing the force balances which allow static, multi-soliton solutions to exist. Solitons in the Israel-Wilson-Perjes (IWP) spacetimes each carry arbitrary, classical angular momenta. Solitons in the Aichelburg-Embacher "superpartner" spacetimes carry quantum mechanical spin, which originates in the zero-modes of the gravitino field of N=2 supergravity in an extreme Reissner-Nordstrom background. In each case we find a cancellation between gravitational spin-spin and magnetic dipole-dipole forces, in addition to the usual one between Newtonian gravitational attraction and Coulombic electrostatic repulsion. In both cases, we analyze the forces between two solitons by treating one of the solitons as a probe or test particle, with the appropriate properties, moving in the background of the other. In the IWP case, the equation of motion for a spinning test particle, originally due to Papapetrou, includes a coupling between the background curvature and the spin of the test particle. In the superpartner case, the relevant equation of motion follows from a kappa-symmetric superparticle action.Comment: 11 page

    Energy and Momentum of a Class of Rotating Gravitational Waves

    Get PDF
    We calculate energy and momentum for a class of cylindrical rotating gravitational waves using Einstein and Papapetrou's prescriptions. It is shown that the results obtained are reduced to the special case of the cylindrical gravitational waves already available in the literature.Comment: 11 pages, no figure, Late

    Stationary perturbations and infinitesimal rotations of static Einstein-Yang-Mills configurations with bosonic matter

    Get PDF
    Using the Kaluza-Klein structure of stationary spacetimes, a framework for analyzing stationary perturbations of static Einstein-Yang-Mills configurations with bosonic matter fields is presented. It is shown that the perturbations giving rise to non-vanishing ADM angular momentum are governed by a self-adjoint system of equations for a set of gauge invariant scalar amplitudes. The method is illustrated for SU(2) gauge fields, coupled to a Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes arise generically in self-gravitating non-Abelian gauge theories with bosonic matter, whereas, in general, soliton solutions do not have rotating counterparts.Comment: 8 pages, revtex, no figure

    Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies

    Full text link
    Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order (O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies. In particular we determine the effects of radiation-reaction coupled to spin-orbit effects on the two-body equations of motion, and on the evolution of the spins. For a suitable definition of spin, we reproduce the standard equations of motion and spin-precession at the first post-Newtonian order. At 3.5PN order, we determine the spin-orbit induced reaction effects on the orbital motion, but we find that radiation damping has no effect on either the magnitude or the direction of the spins. Using the equations of motion, we find that the loss of total energy and total angular momentum induced by spin-orbit effects precisely balances the radiative flux of those quantities calculated by Kidder et al. The equations of motion may be useful for evolving inspiraling orbits of compact spinning binaries.Comment: 19 pages, small corrections, equivalent to published versio
    • …
    corecore