32 research outputs found

    Object-Level Reasoning with Logics Encoded in HOL Light

    Get PDF
    We present a generic framework that facilitates object level reasoning with logics that are encoded within the Higher Order Logic theorem proving environment of HOL Light. This involves proving statements in any logic using intuitive forward and backward chaining in a sequent calculus style. It is made possible by automated machinery that take care of the necessary structural reasoning and term matching automatically. Our framework can also handle type theoretic correspondences of proofs, effectively allowing the type checking and construction of computational processes via proof. We demonstrate our implementation using a simple propositional logic and its Curry-Howard correspondence to the lambda-calculus, and argue its use with linear logic and its various correspondences to session types.Comment: In Proceedings LFMTP 2020, arXiv:2101.0283

    Alignment-based conformance checking over probabilistic events

    Get PDF
    Conformance checking techniques allow us to evaluate how well some exhibited behaviour, represented by a trace of monitored events, conforms to a specified process model. Modern monitoring and activity recognition technologies, such as those relying on sensors, the IoT, statistics and AI, can produce a wealth of relevant event data. However, this data is typically characterised by noise and uncertainty, in contrast to the assumption of a deterministic event log required by conformance checking algorithms. In this paper, we extend alignment-based conformance checking to function under a probabilistic event log. We introduce a weighted trace model and weighted alignment cost function, and a custom threshold parameter that controls the level of confidence on the event data vs. the process model. The resulting algorithm considers activities of lower but sufficiently high probability that better align with the process model. We explain the algorithm and its motivation both from formal and intuitive perspectives, and demonstrate its functionality in comparison with deterministic alignment using real-life datasets

    A Real-world Case Study of Process and Data Driven Predictive Analytics for Manufacturing Workflows

    Get PDF
    We present a novel application of business process modelling and simulation of manufacturing workflows. Using formal methods, we produce correct-by-construction executable models that can be simulated in an interleaved way. The simulation draws advanced analytics from live IoT monitoring as well as an ERP system to provide predictive business intelligence. We describe our process and resource modelling efforts in the context of a collaborative project with two manufacturing partners. We evaluate our results based on the improvement of the scheduling accuracy for real production flows
    corecore