
Alignment-based conformance checking over probabilistic events

Jiawei Zheng
School of Informatics

University of Edinburgh
jw.zheng@ed.ac.uk

Petros Papapanagiotou
School of Informatics

University of Edinburgh
pe.p@ed.ac.uk

Jacques D. Fleuriot
School of Informatics

University of Edinburgh
jdf@ed.ac.uk

Abstract

Conformance checking techniques allow us
to evaluate how well some exhibited behaviour,
represented by a trace of monitored events, conforms
to a specified process model. Modern monitoring and
activity recognition technologies, such as those relying
on sensors, the IoT, statistics and AI, can produce a
wealth of relevant event data. However, this data is
typically characterised by noise and uncertainty, in
contrast to the assumption of a deterministic event
log required by conformance checking algorithms. In
this paper, we extend alignment-based conformance
checking to function under a probabilistic event log.
We introduce a weighted trace model and weighted
alignment cost function, and a custom threshold
parameter that controls the level of confidence on
the event data vs. the process model. The resulting
algorithm considers activities of lower but sufficiently
high probability that better align with the process
model. We explain the algorithm and its motivation both
from formal and intuitive perspectives, and demonstrate
its functionality in comparison with deterministic
alignment using real-life datasets.

Keywords: Conformance checking, Probabilistic
events, Uncertainty, Probabilistic cost function

1. Introduction

Conformance checking is the task of comparing
the behaviour captured by event logs recorded during
the execution of a process to the intended behaviour
of a corresponding process model (Carmona et al.,
2018). It evaluates how well the execution matches the
modelled process and allows us to detect when things
are diverging from a desired or expected workflow. A

widely used conformance checking approach is based on
the alignment of the events in the log with the activities
in the process model, where any misalignments are
potential deviations (Adriansyah et al., 2011).

With the advances of sensor technologies, the
Internet of Things (IoT) and modern Artificial
Intelligence, we are now generating an abundance of
data that can be used to detect processes as they are
being performed in the physical world. However, this
data is typically noisy, with errors caused by various
factors such as the environment, sensor accuracy, faults,
malfunctions, and the inherent uncertainty of statistical
and machine learning techniques used to analyse the
data. The standard alignment conformance checking
approach is only able to fit deterministic events that are
assumed to reflect reality with certainty (Cohen and Gal,
2021). This means that probabilistic event data has to
be reduced to a deterministic event log in order to be
used. This removes information from the event log, thus
lowering the confidence on any detected deviations.

We present an extension of alignment-based
conformance checking under the assumption of a
probabilistic event log with a categorical distribution
over a set of activities. We introduce a cost function
that takes activity probabilities into consideration, and
a custom parameter that allows the algorithm to align
activities of lower but sufficiently high probability that
better agree with the process model, as opposed to
always assuming the most-probable activities occurred.
In effect, this leverages the knowledge captured in the
process model to address levels of uncertainty in the
event data, with the aim of reducing the number of false
positives and false negatives in deviation detection. We
further motivate our work with an example from recent
research in Activities of Daily Living (Section 2). We
give a formal presentation of our algorithm (Section 5),

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 5982
URI: https://hdl.handle.net/10125/107104
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

explain the operation and intuition behind its parameter
(Section 6), and evaluate the performance on real-life
datasets (Section 7). We implement our algorithm as a
Python package based on the PM4Py framework (Berti
et al., 2019) and open-sourced on GitHub1.

2. Motivating Example

Smart home monitoring of Activities of Daily Living
(ADLs) has seen increased attention in recent research,
particularly in the context of home care (Zheng and
Papapanagiotou, 2022). For instance, ADL data can
be used to analyse the daily routine of an older adult
(as a personal process model) and detect when they
deviate from that healthy behaviour using conformance
checking (Di Federico and Burattin, 2023), such as
skipping medication, etc.

ADL data is typically based on smart home and
wearable sensors. A Human Activity Recognition
(HAR) algorithm, often based on supervised learning,
helps classify that data into distinct daily activities,
such as sleeping, eating, reading, etc. Subsequent
analysis, including for conformance, usually assumes
the most probable activity is the one that took place,
and the alternatives, no matter how likely, are never
considered (Cohen and Gal, 2021; Sztyler et al.,
2016). However, the result of HAR is uncertain due
to inter-class similarity, usually taking the form of a
categorical probability distribution over the possible
classes of activities. For example, a HAR algorithm
may classify some sensor input as the drinking from
cup activity with 33% probability, answering phone with
34% probability, or spraying from a bottle with 33%
probability, all three of which options have a similar
pattern in the sensor data (Gupta and Davis, 2007).

In the context of ADL monitoring for care, a
misclassification of drinking from cup as answering
phone, which is only 1% more likely in our example,
may lead to an alert of a deviation, for instance related
to the levels of hydration of the person. This would be
an unnecessary, false positive alert, caused by the fact
that the conformance analysis only considers the most
probable activities. Instead, we want an algorithm that
operates under an assumption of uncertainty, such that
it considers the process model as an additional source
of information of what may have occurred in reality,
beyond the noisy sensor and HAR data.

In contrast, if the probability of an activity is too low
(e.g. a 3% probability of drinking from cup compared to
a 64% probability of answering phone), we may want to
consider it as non-conforming, even if it is expected by
the process model. Therefore, incorporating the level of

1 https://github.com/jia-wei-zheng/ProbCost

confidence in the pattern of the process model compared
to the uncertainty of the event log is a key requirement.

The same challenges are emerging in other domains
that feature sensors and AI prominently, such as
manufacturing (Industry 4.0), autonomous vehicles and
healthcare, requiring conformance to production flows,
driving regulations and care pathways respectively.

3. Related work

Alignment conformance checking algorithms
transform the problem of computing alignments
between event logs and process models into an optimal
search problem using the A* algorithm, i.e., minimising
the total alignment cost (Adriansyah et al., 2011).

Recent work on conformance checking under
uncertainty has three focal points: missing data (Felli
et al., 2022; Pegoraro et al., 2021), uncertain event
activity mappings (van der Aa et al., 2020), and
uncertain process models (Bergami et al., 2021).
Koorneef et al. present a probability-based alignment
cost function, based in frequencies of events in historical
event logs, to obtain the most probable alignment. We
adapt this in the context of uncertain events.

Even more recently, Cohen and Gal (2021) presented
a review of the challenges related to probabilistic
event data in conformance checking techniques. They
highlighted the demand for new conformance checking
techniques that can adapt multiple types of uncertain
event data, which further motivates our work.

Based on the challenges identified by Cohen et
al., Bogdanov et al. (2022a) presented a conformance
checking algorithm over stochastic logs, which takes the
probability of event occurrences into account explicitly,
similarly to our algorithm. They apply their algorithm
on trace recovery, i.e., recovering the original trace from
a probabilistic one based on a maximal alignment to
a reference process model (Bogdanov et al., 2022b).
However, in their approach an event is aligned to a
corresponding activity in the process model regardless
of the probability that activity actually occurred, as
long as it is non-zero. This assumes the occurrence of
activities with very low or even close to zero probability,
as long as they align with the process model, therefore
discarding potential true positive deviations.

Overall, the need for conformance checking under
uncertainty has been recognised by researchers in the
area, but the related research is still in its infancy.

4. Preliminaries

Our approach is built upon well-established
literature on alignment-based conformance checking

Page 5983

https://github.com/jia-wei-zheng/ProbCost

a

b c

d

1

PersonalGrooming

Eating PersonalGrooming

Eating

a b c1

a

b c

d

(a, >>)
(b,

>>

)

c

PersonalGrooming PersonalGrooming

DeskWork PickUpCup DrinkFromCup PutDownCup1

a

b c

d

1

PickUpCup

DrinkFromCup PutDownCup

AnswerPhone

DrinkFromCup

a b c1

PickUpCup PutDownCup

a

b

c

b

1

b

c
0.7

0.3 0.7

0.3

0.7

0.3

(a, >>)

(b, >>)

(c, >>)

(b, >>)1

(b, >>)

(c, >>)
0.7

0.3 0.7

0.3

0.7

0.3

(a, a)

(>>, a)1

(b, b)

(>>, b)
(>>, c)

(>>, d)

(b, b)
(b, b)

(c, c)
(c, c)

0.3

0.7 0.7 0.3

0.3
0.7

1
1

1

1

Figure 1: Example of a process model.

(Carmona et al., 2018). We provide brief definitions of
relevant concepts so that this paper is self-contained.

Definition 1 (Petri net). Given a set of activities A, a
Petri net is defined as a tuple N = (P, T, F, α), where
P and T are sets of places and transitions respectively.
F is a set of arcs representing flow relations between
transitions and places, so that F ⊆ (P × T) ∪ (T × P).
A labelling function α : T → A ∪ {τ} assigns either an
activity from A or τ (immediate transition not associated
with any activity) to each transition in T .

Petri Nets offer a standard representation for process
models, such as the example shown in Figure 1.

An event log captures information about the
execution of multiple cases (or instances) of a process
model. Each case is represented by a trace of events
σ = ⟨e0, e1, ..., en⟩ that correspond to observations
of the activities that occurred during the process. We
assume each event corresponds to a single activity in the
process. An event is deterministic if it is associated with
an activity in the process model in a deterministic way.

When aligning a trace of events to a model, the trace
is transformed into a Petri net called a trace model.

Definition 2 (Trace model). Given a sequence of events
σ = ⟨e0, e1, ..., en⟩ over a set of activities A can be
converted into a Petri net Nt = (P t, T t, F t, αt), called
a trace model. In this, each event ei is mapped to a
transition in T t. The transitions are then interleaved
with places in P t to form a linear sequence.

We combine the trace model with a given process
model in a single Petri Net called a synchronous product
net. In this, the set of transitions T s consists of 3
subsets, namely synchronous moves TSM , model moves
TMM , and log moves TLM . Combining a transition
for the same activity a from the 2 models results in a
synchronous move (a, a) ∈ TSM , meaning that an event
corresponding to a is aligned to activity a in the process
model. Transitions in the original process model that do
not have a corresponding transition in the trace model
are represented as model moves (≫, a) ∈ TMM or
model moves on τ (≫, τ) and transitions in the original
trace model that do not correspond to the process model
as log moves (a,≫) ∈ TLM (Carmona et al., 2018).

An alignment is a sequence of transition firings

in the synchronous product net. There exists at least
one alignment, such that contains only model moves,
followed by log moves. However, the goal is to find the
optimal alignment between the process and trace given
some cost function c(t) for each transition t ∈ T s.
Definition 3 (Cost function, Standard cost function). A
cost function c : T s → R+ associates a non-negative
cost to the firing of each transition of the synchronous
product net (Bloemen et al., 2018), such that:

c(t) =

0, t = (≫, τ) (model move on τ)
0, t ∈ TSM (synchronous move, e.g.

(a, a))
1, t ∈ TLM (log move, e.g. (a,≫))
1, t ∈ TMM (model move, e.g. (≫, a))

Given this, the problem of finding an optimal
alignment is reduced to searching an execution sequence
of the synchronous product with the minimum cost. The
standard cost function ensures an optimal number of
synchronous moves, i.e. events and process transitions
that align together at the same time. A fitness score will
be derived from the alignment.

5. Conformance checking over
probabilistic events

This section presents ProbCost, our alignment
algorithm. Traditional alignment-based conformance
checking only considers traces of deterministic events.
In our work, we instead consider a trace of m events
⟨e0, ..., em−1⟩ each of which can correspond to one of
n possible activities {a0, ..., an−1} with the categorical
probability pi,j = p(aj |ei) that event ei is an
observation of activity aj . This can be modelled by a
probability matrix as follows:

e0 e1 ... em−2 em−1

a0 p0,0 p1,0 ... pm−2,0 pm−1,0

a1 p0,1 p1,1 ... pm−2,1 pm−1,1

.
an−1 p0,n−1 p1,n−1 ... pm−2,n−1 pm−1,n−1

(1)

where entries pi,j ∈ [0, 1] and 0 ≤ i ≤ m− 1, 0 ≤ j ≤
n− 1 represent the probability that event ei corresponds
to activity aj . The sum of the probabilities for each

event should be 1, i.e.
∑n−1

j=0 pi,j = 1,∀0 ≤ i ≤ m− 1.
An example trace of 3 events ⟨e0, e1, e2⟩ each of

which may correspond to 3 activity categories a, b, c can
be modelled by the following probability matrix:

P =

e0 e1 e2
a 0.3 0 0
b 0.7 0.7 0.3
c 0 0.3 0.7

(2)

Page 5984

where the first event e0 has a 0.3 probability to be
associated with activity a and 0.7 probability to be
associated with b.

This probability matrix can be modelled as a
weighted trace model as follows:
Definition 4 (Weighted trace model). Let A be a set of n
activities and σ a trace of m events, where each ei ∈ σ
corresponds to each aj ∈ A with probability pi,j . A
weighted trace model is a Petri net with weights, i.e.,
(Pwt, Twt, Fwt, αwt, wwt), where:

• Pwt = {P0, ..., Pm−1} a set of m places,

• Twt =
⋃

i,j{ti,j | pi,j > 0}, where ti,j is a
transition for event ei if activity aj corresponds
to it with probability pi,j > 0,

• Fwt =
⋃

i,j{(Pj−1, ti,j), (ti,j , Pj) | ti,j ∈ Twt}

• αwt(ti,j) = aj , for each transition ti,j ∈ Twt,

• wwt : Twt → [0, 1], where wwt(ti,j) = pi,j is
a function assigning a weight to each transition
based on the probabilistic matrix of the event log,

Note that, in contrast to deterministic trace models,
a weighted trace model has multiple transitions for
every event, linked to possible activities with different
weights. The weighted trace model corresponding to
probabilistic matrix (2) is shown in Figure 2.

a

b c

d

1

PersonalGrooming

Eating PersonalGrooming

Eating

a b c1

a

b c

d

(a, >>)
(b,

>>

)

c

PersonalGrooming PersonalGrooming

DeskWork PickUpCup DrinkFromCup PutDownCup1

a

b c

d

1

PickUpCup

DrinkFromCup PutDownCup

AnswerPhone

DrinkFromCup

a b c1

PickUpCup PutDownCup

a

b

c

b

1

b

c0.7

0.3 0.7

0.3

0.7

0.3

(a, >>)

(b, >>)

(c, >>)

(b, >>)1

(b, >>)

(c, >>)
0.7

0.3 0.7

0.3

0.7

0.3

(a, a)

(>>, a)1

(b, b)

(>>, b)
(>>, c)

(>>, d)

(b, b)
(b, b)

(c, c)
(c, c)0.3

0.7 0.7 0.3

0.3
0.7

1
1

1

1

Figure 2: Weighted trace model of matrix (2).

Definition 5 (Weighted synchronous product net). Let
A be a set of n activities, Np = (P p, T p, F p, αp)
a process model and σ an captured probabilistic trace
of m events with categorical probability pi,j over the
activities, with the corresponding weighted trace model
Nwt = (Pwt, Twt, Fwt, αwt, wwt). A synchronous
product net is a Petri net with weights, i.e., Nws =
(Pws, Tws, Fws, αws, wws), such that:

• Pws = P p ∪ Pwt,

• Tws = (TMM ∪ TLM ∪ TSM), where TMM =
{≫} × T p denotes moves on model, TLM =
Twt × {≫} denotes moves on log, TSM =
{(t1, t2) ∈ T p × Twt | αp(t1) = αwt(t2)}
denotes synchronous moves.

• Fws = {(p, (t1, t2)) ∈ Pws × Tws | (p, t1) ∈
F p∨(p, t2) ∈ Fwt}∪{((t1, t2), p) ∈ Tws×Pws |
(t1, p) ∈ F p ∨ (t2, p) ∈ Fwt},

• αws((t1, t2)) = (l1, l2) for all transitions
(t1, t2) ∈ Tws, where l1 = αp if t1 ∈ T p,
otherwise l1 =≫; and l2 = αwt if t2 ∈ Twt,
otherwise l2 =≫,

• wws : Tws → [0, 1] a weight function
for each transition, where wws((t1, t2)) =
wwt(t1) if (t1, t2) ∈ (TLM ∪ TSM), otherwise
wws((t1, t2)) = 1,

Note that the worst-case of the number of transitions
Tws is exponential to the number of events, which
occurs when (i) the number of events in the trace is equal
to the number of activities in the process model, (ii) each
event has multiple transitions, and (iii) all transitions
match to a corresponding labelled activity in the process
model. This means that all events can be matched to
every activity in the model. However, such high level of
uncertainty and generality is unrealistic in the context of
the applications that have motivated this work.

Figure 3 shows the weighted synchronous product
net of our example process model (Figure 1) and
weighted trace model (Figure 2).

Knowing the probabilities of each activity given an
observed event allows us to calculate the cost of each
transition based on the likelihood that the corresponding
activity actually occurred. This likelihood is reflected in
the weight wws of each transition. Activities with higher
probability should have lower cost so that the algorithm
is more likely to select them in the optimal alignment.
We use a log transformation to transform probability
products to sums of log probabilities. Based on this, we
define a new, weighted cost function c(t):
Definition 6 (Weighted cost function). Given
a weighted synchronous product net Nws =
(Pws, Tws, Fws, αws, wws), we define a weighted
cost function for each transition t ∈ Tws of the
synchronous product net as follows:

c(t) =

0, t = (≫, τ)
−log(wws(t)), t ∈ TSM

−log(wws(t))− log(ϵ), t ∈ TLM

−log(ϵ), t ∈ TMM

where ϵ ∈ (0, 1) is a parameter representing the level of
confidence in the event log (see Section 6).

Using this cost similarly to the standard alignment
algorithm (Adriansyah et al., 2011), we find an optimal
alignment by using A* algorithm and derive a fitness
score based on the alignment using the same way.

ProbCost includes the following steps: (i) build
the process and weighted trace models, (ii) construct the
weighted synchronous product net, (iii) use A* to find an
optimal alignment based on the weighted cost function,

Page 5985

a

b c

d

1

PersonalGrooming

Eating PersonalGrooming

Eating

a b c1

a

b c

d

(a, >>)
(b,

>>

)

c

PersonalGrooming PersonalGrooming

DeskWork PickUpCup DrinkFromCup PutDownCup1

a

b c

d

1

PickUpCup

DrinkFromCup PutDownCup

AnswerPhone

DrinkFromCup

a b c1

PickUpCup PutDownCup

a

b

c

b

1

b

c
0.7

0.3 0.7

0.3

0.7

0.3

(a, >>)

(b, >>)

(c, >>)

(b, >>)1

(b, >>)

(c, >>)
0.7

0.3 0.7

0.3

0.7

0.3

(a, a)

(>>, a)1

(b, b)

(>>, b)
(>>, c)

(>>, d)

(b, b)
(b, b)

(c, c)
(c, c)0.3

0.7 0.7 0.3

0.3
0.7

1
1

1

1

Figure 3: Weighted synchronous product net of our example models from Figure 1 and 2, annotated with the weight
function wws and with different colours for model moves (yellow), log moves (grey) and synchronous moves (blue).

Table 1: Alignment results of 3 events with probability
matrix (2) and the process model from Figure 1.

(a) Standard alignment

Event log ≫ b b c
Process model a ≫ b c

(b) Probabilistic alignment

Event log a b c
Process model a b c

(iv) tune the parameter ϵ based on the context, (v) obtain
final alignment using the tuned ϵ.

Example 1. Consider the process model (Figure 1)
and the example probabilistic trace in (2), and their
composed weighted synchronous product net in
Figure 3, we could get the cost of the synchronous
move, e.g., (a, a) is −log(0.3), the cost of the model
move, e.g. (≫, a) is −log(ϵ), and the cost of the
log move, e.g. (a,≫) is −log(0.3) − log(ϵ). The
optimal alignment computed by ProbCost (ϵ = 0.4)
is shown in Table 1b, with 100% fitness. Compared
to the results of standard alignment algorithm (shown
in Table 1a, with 67% fitness) which assumes the most
likely activities for each event, i.e. the trace ⟨b, b, c⟩,
ProbCost chooses activity a for the first event, even
though is has a lower probability (0.3) than b (0.7) and
forms a perfect alignment with the process model. This
is because the cost of choosing the same trace ⟨b, b, c⟩
as the standard alignment algorithm is higher than the
cost of trace ⟨a, b, c⟩.

This fits our intuition that even though a is less likely
to have occurred given our first event observation, the
process model captures the knowledge that a is expected
to occur (e.g. based on prior observations or physical
restrictions), thus increasing our perceived likelihood
for a. We thus use our confidence in the modelled
process to mitigate the uncertainty of the event log.

Example 2. Considering the same process model and
event log with Example 1, we change ϵ to be 0.8.
ProbCost gets the same optimal alignment as the

standard alignment algorithm, as shown in Table 1a.
Compared to Example 1, this shows that the ϵ

parameter is able to control the acceptable probability of
events. Instead of blindly accepting the activity expected
by the process model, changing ϵ allows us to determine
whether we trust the event log’s indication of most
probable activity or the process model’s expectation. We
analyse ϵ more formally in Section 6.
Complexity analysis Compared to the standard
A* alignment approach, whose worst-case space
complexity is linear to the number of reachable state
of the synchronous product net (Carmona et al., 2018),
we have the same number of reachable states and,
therefore, the same space complexity. Furthermore,
time complexity depends on the number of transitions
between initial and final states of the synchronous
product net (Carmona et al., 2018). Therefore,
the worst-case time complexity of ProbCost is
exponential compared to the standard approach, when
the worst-case number of transitions occurs in the
synchronous product net. An empirical evaluation of
computation time is discussed in Section 7.2.

6. Threshold parameter ϵ

Our weighted cost function c(t) includes a
“threshold” parameter ϵ. As hinted in the previous
section, ϵ allows the user to control the level of
confidence, or trust, in the modelled process given an
uncertain event log. An intuitive way to express this is
by posing the following question:

How probable does an event need to be for
it to move synchronously with a matching
activity in the process model?

Let us explore a minimal example whereby ϵ allows
us to control the answer to that question.

Consider a trace with a single event e0 that

Page 5986

Table 2: Possible optimal alignments of a single event
with 2 possible activities a, b and process model with
single step a.

(a) Assuming a occurred.

Event log a
Process model a

(b) Assuming b occurred.

Event log b ≫
Process model ≫ a

corresponds to either of two possible activities a and
b with probabilities p0,a = x and p0,b = 1 − x, for
some x ∈ [0, 1]. We want to check conformance of
this trace with a model containing a as a single step in
the process. In this case, we have 2 possible optimal
alignments shown in Table 2.

The first (Table 2a) contains a synchronous move
which assumes the event corresponds to activity a. The
second (Table 2b) considers that the event corresponds
to activity b, leading to a model move and a log move.
The choice between the two should be based on the
probabilities of a and b. The question is what value does
x need to be for the first alignment to be optimal?

In the extreme cases, if x = 1 then a occurred
with 100% probability, so the first alignment should
be optimal, and symmetrically if x = 0 then the
second alignment should be optimal. Furthermore,
if we only consider the most likely activity as the
one that actually occurred, which is in fact standard
in activity recognition (Sztyler et al., 2016), then the
second alignment would be optimal only when x < 0.5.

However, we posit that this decision may be
influenced by the process model. For instance, consider
the extreme case where the process model reflects
domain knowledge that only activity a is actually
possible, whereas activity b is not possible at all2.
A high probability p0,b might then be attributed, for
example, to noise in the data, and the second alignment
should always be sub-optimal.

More generally, we may choose to trust the reality
(or our expectation of it) as reflected by the process
model more than a noisy and uncertain event log, i.e.
perform a synchronous move on a even when x <
0.5. Notably, Bogdanov et al. (2022a) follow an
inflexible approach compared to ours, such that always
considers the first alignment to be optimal even when x
approaches zero.

In our approach, the parameter ϵ allows us to control
how low x can be for a to be chosen by the algorithm.
Given Definition 6, the total cost of the alignment in
Table 2a is −log(x) (synchronous move on a), whereas
the total cost of the alignment in Table 2b is −log(1 −

2Of course, such an extreme model would defeat the purpose of
conformance checking to begin with, since we already know what is
possible, but it helps illustrate our point.

Figure 4: Relation between ϵ, p0,a, and assumed activity.

Figure 5: Trace recovery accuracy for different number
of traces in model discovery.

x) − 2log(ϵ) (move on log b and move on model). The
former is optimal under the condition x

1−x ≥ ϵ2.
For the synchronous move on the model’s expected

activity a to be optimal (i.e. to assume that a occurred)
the ratio of p0,a to p0,b should be more than ϵ2.

The relationship between p0,a, ϵ and the assumed
activity is shown in Figure 4. For each combination
of values for p0,a and ϵ above the line, the algorithm
assumes a occurred and picks the first alignment as
optimal. Otherwise below the line, it assumes b occurred
and picks the second alignment as optimal. The lower
the threshold, the lower the probability of a needs to be
for a synchronous move, and therefore the more we trust
the process model instead of the probability distribution
of the event log. With ϵ ∈ (0, 1), the threshold for the
probability of a can be set to be anywhere in (0, 0.5).

When considering more complex process models
and larger traces, with multiple possible activities
per event, the interaction between ϵ, the activity
probabilities and the alignment costs become harder to
analyse. This makes the selection of the appropriate
value of ϵ more difficult. However, a general principle
applies: when ϵ is closer to 1, the algorithm trusts the
probabilities of the event log and considers the most
probable activities. As the value of ϵ decreases, the
algorithm puts more trust in the process model and
accepts activities with lower probability in the event log
if they align to those in the model.

This selection of the appropriate value for ϵ depends
on the context of each case study and our confidence

Page 5987

in the process model. In many of our examples
when choosing between optimal alignments, we have
observed ϵ to be the threshold for the ratio of
probabilities of the activities corresponding to each
alignment. This pattern is also observed in our
experimental study. Pending further research on the
methods to determine the appropriate value of ϵ, we
select its value based on (i) the developed intuition
(higher values mean higher trust on the log), (ii) the ratio
of the involved probabilities and (iii) tuning ϵ on training
datasets in a supervised way (see Section 7.2).

7. Experimental study

In this section, we evaluate the performance of
ProbCost in trace recovery and deviation detection.
These are common tasks where conformance checking
can provide value in real world applications, and
have been used for the evaluation of conformance
checking algorithms in related literature (Bogdanov
et al., 2022b). We first evaluate ProbCost’s ability
to replicate the trace recovery results of Bogdanov
et al. Next, we evaluate ProbCost’s performance in
deviation detection compared to the standard alignment
and Bogdanov et al.’s approach.

Our experiment employs three publicly available
real-world datasets: (i) BPI Challenge (BPIC) 20123

related to personal loan processes, which contains
13087 cases over 36 activities (assessing the application,
calling after sent offers, etc.), (ii) BPIC 20194 related
to purchase order handling processes including 251734
cases over 42 activities, (submit order, payment, etc.),
and (iii) ADLs daily log (Sztyler et al., 2016), which
records individuals’ daily routines for 10 days, including
13 types of activities, (eat, take medicine, etc.). Both
BPIC datasets have been used to evaluate algorithms in
relevant literature on uncertain data settings (Bogdanov
et al., 2022a; Pegoraro et al., 2020).

7.1. Evaluating trace recovery

In our first experiment, we investigate the ability of
ProbCost to recover the real trace from a probabilistic
event log (trace recovery) under the same assumptions
as Bogdanov et al. Replicating their strategy on the
same BPIC 2012 dataset, we first discover a process
model from a set of randomly selected traces, then
generate probabilistic events by adding noise to the
original activities of a different set of 100 traces.

For each event in each trace we attach a second
alternative activity to its original label, selected

3https://data.4tu.nl/articles/ /12689204/1
4https://icpmconference.org/2019/icpm-2019/contests-challenges

/bpi-challenge-2019/

randomly from the set of activities in the dataset.
The original activity is assigned a randomly chosen
probability p, whereas the added activity is assigned
1 − p. A parameter Ph ∈ [0, 1] specifies the proportion
of original activities with higher probabilities than their
added alternatives (p > 1 − p). When Ph = 1 all the
original activities are assigned higher probability than
the added alternatives, and vice versa when Ph = 0.

We then perform conformance checking with our
algorithm, and extract the optimally aligned sequences
of events as the recovered traces. We calculate the
recovery accuracy by dividing the number of correctly
recovered events (compared to the original ones) by the
total number of events, and compare the results against
the Argmax sequence (choosing the activity with highest
probability for each event).

The threshold parameter ϵ is set to a low value
(0.01) to simulate the intention of Bogdanov et al.
to maximally align activities to the process model
regardless of probability. For the model discovery we
use the Inductive Miner (Adriansyah et al., 2011) as
implemented in PM4Py (Berti et al., 2019), on separate
sets of 15 and 100 traces. Our results compared to
Argmax are shown in Figure 5,

Our results seem to match those of (Bogdanov et al.,
2022b, Figure 5). Specifically, when Ph is 0, recovery
accuracy based on the model discovered by 15 traces
(0.81) is better than the result using 100 traces (0.75),
which is same to their result. As Ph increases, the
accuracy increases, until Ph reaches 1, where the same
result as Argmax is obtained. This validates that their
approach can be replicated by our algorithm by setting
a low value of ϵ, close to 0 (e.g. 0.01) as a baseline.

7.2. Evaluating deviation detection

Experiment design In this experiment, we evaluate the
performance of our algorithm when detecting deviations
on all three datasets, i.e. identifying events that do not
fit the process model. In the context of alignment-based
conformance checking, a log move indicates a deviation
(the event is inconsistent with the process model),
while a synchronous move means a normal occurrence
(the event fits with the activity in the process model).
We compare the performance of our approach with
the standard alignment algorithm over the Argmax
sequences and the approach of Bogdanov et al. Note that
in contrast to the assumption we made in Section 7.1,
if events fit the process model but occur with low
probability, we regard them as deviations.

We aim to synthesise a set of probabilistic event
traces in such a way that we can control the ratio of
deviations, and there exist low probability activities that

Page 5988

are not deviations. We accomplish this as follows.
For the two BPI datasets, we first perform model

discovery using 20 randomly chosen traces, and choose
another 100 traces from the rest to generate probabilistic
events using the same setting as previously. For the
smaller ADL dataset which contains 10 traces of daily
logs, we randomly chose 5 traces for model discovery
and the remaining 5 for generating probabilistic events.
We use Ph = 0 so that all the added activities have
higher probabilities than the original ones (p < 1− p).

Standard conformance checking over the traces
against the discovered model yielded 100%, 96%
and 100% fitness for the three datasets respectively.
However, for the sequences of added activities, the
average fitness and standard deviation (SD) are 23%
(0.08 SD), 8% (0.11 SD), and 49% (0.15 SD),
respectively. This means that the original traces conform
to the process model (even though they were not used
in discovery), whereas the added activities do not have
a good fit. Based on this, we define deviations in a
probabilistic trace by considering the original activities
as normal occurrences and the added ones as deviations.

Furthermore, under our assumption of noisy data,
we introduce a deviation confidence parameter Td.
Specifically, for each event, if the odds of the original
activity happening, i.e. the ratio of the probability of
the original activity p to that of the alternative is higher
than Td, i.e. p

1−p ≥ Td, then we classify this event as a
normal occurrence. Otherwise, the event is a deviation.

For example, for Td = 0.50, if p < 0.33 then the
alternative occurred (true deviation). However, if p =
0.40, then we determine that the event is in fact an actual
occurrence. Note that p < 0.50 always, since Ph = 0.

If Td is close to 0, the original activity is a normal
occurrence even when its probability is very low, as long
as it is non-zero, resulting in very few deviations. As
Td increases from 0 to 1 the number of normal events
decreases while the number of deviations increases.

Therefore, in this setup we control the ratio of
deviations using Td and normal occurrences have low
probabilities (Ph = 0).

We use accuracy, F1-score, sensitivity (TP
TP+FN) and

specificity (TN
TN+FP) to measure the performance of

deviation detection based on the counts of True Positives
(TP), False Positives (FP), True Negatives (TN)
and False Negatives (FN) (Arifoglu and Bouchachia,
2019). We also use Geometric mean (G-mean, i.e.,√
sensitivity × specificity) metric to balance both

sensitivity and specificity on imbalanced datasets (Kubat
et al., 1997).
Tuning threshold ϵ Next, we set the deviation
confidence Td to 0.25, which means the probability of
the original activity should be higher than 0.20 to be

Figure 6: Deviation
detection performance
for different values of ϵ
(Td = 0.25).

Figure 7: Results for
deviation detection
on different datasets
(Td = 0.25).

considered as a normal occurrence. We evaluate the
performance of ProbCost over the development set
(70% of the whole data) under different values of ϵ,
ranging from 0.05 to 1 with a 0.05 step. The accuracy,
F1-score and G-mean are calculated for each value of
ϵ to determine the optimal value that yields the best
deviation detection performance, as these metrics are
suitable for evaluating imbalanced datasets. The results
are presented in Figure 6. The best performance was
achieved for ϵ between 0.25 to 0.30 for all three datasets
(variation due to classes proportions), which is basically
equal to the deviation confidence Td. This follows the ϵ
selection strategy discussed in Section 6. Based on this,
we set ϵ = Td for further experiments.
Results We assess the deviation detection results
using our algorithm (ϵ = 0.25) compared to the
standard alignment conformance checking algorithm as
implemented in PM4Py and the approach by Bogdanov
et al. (replicated by our algorithm with ϵ = 0.01). The
comparative results are shown in Figure 7.

Based on these results, ProbCost performs
better than both the standard alignment algorithm and
Bogdanov et al. in Accuracy, F1-score and G-mean
metrics. The last one has the lowest sensitivity and
mostly highest specificity because it always selects the
activities that fit in the process model even when their
probability is very low, leading to more false negatives.

Page 5989

Figure 8: BPIC 2019 results for different values of Td.

In contrast, the standard alignment algorithm has highest
sensitivity and lowest specificity, because it may ignore
the normally occurring activity even if its probability
is close to the probability of the alternative, leading
to more false positives. ProbCost achieves better
G-mean score than the other two approaches, it suggests
that it is better at correctly identifying both positive and
negative cases, resulting in a better overall performance.
In brief, our algorithm can better balance the confidence
between the process model and the uncertain event log
to obtain better results than both the others.

We further investigate the three algorithms under
different deviation confidence values Td. For this,
we iterate Td from 0 to 1 with 0.05 step to generate
deviation data before running the 3 algorithms. As
mentioned previously, we set ϵ = Td. The approach of
Bogdanov et al. is replicated by setting ϵ = 0.01.

ProbCost outperforms the others for all the values
of Td in three datasets. Results for different datasets
show similar tendencies, we only show the results of
BPIC 2019 in Figure 8 due to space considerations.
For lower values, as expected, our performance matches
that of Bogdanov et al. as no matter the probability
of the original activity, it can always be aligned with
the expected activity in the process model to identify
a normal occurrence. However, the standard alignment
algorithm gives the lowest accuracy and F1-score
because it chooses the most probable activity for each
event, resulting in more false positives. All three
algorithms produce the lowest G-mean when Td = 0,
because there are no deviations, causing the sensitivity
to be 0. Conversely, there are no normal occurrences
when Td = 1, causing specificity to be 0.

As the deviation confidence Td increases,
ProbCost achieves best performances among the
approaches. The accuracy and F1-score of approach
by Bogdanov et al. decrease, while they increase for
the standard algorithm. This happens because as Td

increases, the original activities need to have higher
probability to be considered as normal occurrences,
but Bogdanov et al. accept activities expected by the

process model even with low probability, resulting in
more false negatives. ProbCost can better balance the
confidence on uncertain events and select the activity
with sufficiently high probability to achieve best
deviation detection accuracy. When Td is increased to
1, our approach yields the same accuracy and F1-score
as the standard alignment algorithm. As we put more
trust on the event log (higher ϵ), we end up considering
the most probable activities, similarly to the standard
alignment algorithm.

Finally, we assess the execution time of ProbCost
on three datasets with different sizes of events and
process models. The results (shown in Table 3) indicate
that the execution time of ProbCost is longer than
the standard approach as expected by the complexity
analysis (Section 5) because the number of transitions
increases, but it is still within a reasonable range. This
indicates that our approach is applicable in practice.

Overall, our approach demonstrates more resilience
to noise and uncertainty in the events, and flexible
control of how much the algorithm should trust the event
log over the structure of the process model via ϵ.

8. Conclusion

In this paper, an extended alignment conformance
checking algorithm is proposed for use with
probabilistic event logs. Specifically, we propose
a weighted trace model for events with a categorical
probability distribution, a weighted alignment cost
function, and a custom threshold parameter that controls
the level of confidence on the event log vs. the process
model. Furthermore, we compared the complexity
results with deterministic alignment approach. Two
sets of experimental studies comparing our approach
to the deterministic alignment algorithm and the
recent relevant approach by Bogdanov et al. show
that our algorithm takes into consideration occurrence
probabilities explicitly and is able to accommodate
activities with lower, but sufficiently high probabilities
if they fit the model. Based on this, we argue that our
algorithm can better tolerate noise in the event log by
leveraging the knowledge captured in the process model
with the aim of reducing the false positive and false
negative rates in deviation detection. As such, it is
better suited to perform conformance checking under
an uncertain, noisy event log, such one produced by
sensors or AI-based algorithms (Cohen and Gal, 2021).

In future work, we plan to further investigate the
effect of ϵ to guide the selection of an appropriate value,
as we are in favour of empirical evaluation at this stage.
We also plan to investigate the results with different
experimental settings, such as more alternative activities

Page 5990

Table 3: Comparison of computation time between standard alignment and ProbCost for different datasets.

Datasets #Cases #Events per case Process model
Computation time

per case (in seconds)
min max avg median #places #transitions Standard ProbCost

BPIC 2012 100 3 56 24.7 27.5 44 59 356.150 865.201
BPIC 2019 100 1 10 5 5 12 18 0.174 0.629

ADLs daily log 5 7 22 15 14 26 41 48.094 93.322

per event, etc. We also plan to improve the efficiency
of algorithm and explore other types of uncertainty of
event data, e.g., repeating or missing events.

Acknowledgements

This research was funded by the Legal & General
Group (research grant to establish the independent
Advanced Care Research Centre at University of
Edinburgh). The funder had no role in conduct of
the study, interpretation or the decision to submit for
publication. The views expressed are those of the
authors and not necessarily those of Legal & General.

References

Adriansyah, A., van Dongen, B., and van der Aalst, W.
(2011). Conformance Checking Using Cost-Based
Fitness Analysis. In 2011 IEEE EDOC, pages 55–64.

Arifoglu, D. and Bouchachia, A. (2019). Detection
of abnormal behaviour for dementia sufferers
using Convolutional Neural Networks. Artificial
Intelligence in Medicine, 94:88–95.

Bergami, G., Maggi, F. M., Montali, M., and Peñaloza,
R. (2021). Probabilistic Trace Alignment. In ICPM
2021, pages 9–16.

Berti, A., van Zelst, S. J., and van der Aalst, W. M. P.
(2019). Process mining for python (pm4py): Bridging
the gap between process- and data science. In ICPM
Demo Track 2019, volume 2374, pages 13–16.

Bloemen, V., van Zelst, S. J., van der Aalst, W. M. P., van
Dongen, B. F., and van de Pol, J. (2018). Maximizing
Synchronization for Aligning Observed and Modelled
Behaviour. In BPM 2018, pages 233–249, Cham.

Bogdanov, E., Cohen, I., and Gal, A. (2022a).
Conformance Checking over Stochastically Known
Logs. In BPM Forum, pages 105–119, Cham.

Bogdanov, E., Cohen, I., and Gal, A. (2022b). Trace
Recovery from Stochastically Known Logs.

Carmona, J., van Dongen, B., Solti, A., and Weidlich,
M. (2018). Conformance Checking: Relating
Processes and Models. Springer, Cham.

Cohen, I. and Gal, A. (2021). Uncertain process
data with probabilistic knowledge: Problem
characterization and challenges. In 2021 BPM
Workshop, volume 2938, pages 51–56.

Di Federico, G. and Burattin, A. (2023). Do you behave
always the same? In ICPM Workshops, pages 5–17.

Felli, P., Gianola, A., Montali, M., Rivkin, A., and
Winkler, S. (2022). Conformance Checking with
Uncertainty via SMT. In BPM 2022, volume 13420,
pages 199–216, Cham.

Gupta, A. and Davis, L. S. (2007). Objects in Action:
An Approach for Combining Action Understanding
and Object Perception. In CVPR 2007, pages 1–8.

Koorneef, M., Solti, A., Leopold, H., and Reijers, H. A.
(2018). Automatic Root Cause Identification Using
Most Probable Alignments. In 2018 BPM Workshops,
pages 204–215, Cham.

Kubat, M., Matwin, S., et al. (1997). Addressing
the curse of imbalanced training sets: one-sided
selection. In ICML, volume 97, page 179. Citeseer.

Pegoraro, M., Uysal, M. S., and van der Aalst, W. M. P.
(2020). Efficient Construction of Behavior Graphs
for Uncertain Event Data. In Business Information
Systems, pages 76–88, Cham.

Pegoraro, M., Uysal, M. S., and van der Aalst, W. M. P.
(2021). Conformance checking over uncertain event
data. Information Systems, 102:101810.

Sztyler, T., Carmona, J., Völker, J., and Stuckenschmidt,
H. (2016). Self-tracking Reloaded: Applying Process
Mining to Personalized Health Care from Labeled
Sensor Data. Transactions on Petri Nets and Other
Models of Concurrency, pages 160–180.

van der Aa, H., Leopold, H., and Reijers, H. A. (2020).
Efficient Process Conformance Checking on the Basis
of Uncertain Event-to-Activity Mappings. IEEE
TKDE, 32(5):927–940.

Zheng, J. and Papapanagiotou, P. (2022). Predictive
Behavioural Monitoring and Deviation Detection in
Activities of Daily Living of Older Adults. In
HEALTHINF 2022, pages 899–910.

Page 5991

	Introduction
	Motivating Example
	Related work
	Preliminaries
	Conformance checking over probabilistic events
	Threshold parameter
	Experimental study
	Evaluating trace recovery
	Evaluating deviation detection

	Conclusion

