25 research outputs found

    Structural Implications for the Formation and Function of the Complement Effector Protein iC3b

    No full text
    Complement-mediated opsonization, phagocytosis, and immune stimulation are critical processes in host defense and homeostasis, with the complement activation fragment iC3b playing a key effector role. To date, however, there is no high-resolution structure of iC3b, and some aspects of its structure-activity profile remain controversial. Here, we employed hydrogen-deuterium exchange mass spectrometry to describe the structure and dynamics of iC3b at a peptide resolution level in direct comparison with its parent protein C3b. In our hydrogen-deuterium exchange mass spectrometry study, 264 peptides were analyzed for their deuterium content, providing almost complete sequence coverage for this 173-kDa protein. Several peptides in iC3b showed significantly higher deuterium uptake when compared with C3b, revealing more dynamic, solvent-exposed regions. Most of them resided in the CUB domain, which contains the heptadecapeptide C3f that is liberated during the conversion of C3b to iC3b. Our data suggest a highly disordered CUB, which has acquired a state similar to that of intrinsically disordered proteins, resulting in a predominant form of iC3b that features high structural flexibility. The structure was further validated using an anti-iC3b mAb that was shown to target an epitope in the CUB region. The information obtained in this work allows us to elucidate determinants of iC3b specificity and activity and provide functional insights into the protein's recognition pattern with respect to regulators and receptors of the complement system

    Coarse-Grained Conformational Sampling of Protein Structure Improves the Fit to Experimental Hydrogen-Exchange Data

    Get PDF
    Monitoring hydrogen/deuterium exchange (HDX) undergone by a protein in solution produces experimental data that translates into valuable information about the protein's structure. Data produced by HDX experiments is often interpreted using a crystal structure of the protein, when available. However, it has been shown that the correspondence between experimental HDX data and crystal structures is often not satisfactory. This creates difficulties when trying to perform a structural analysis of the HDX data. In this paper, we evaluate several strategies to obtain a conformation providing a good fit to the experimental HDX data, which is a premise of an accurate structural analysis. We show that performing molecular dynamics simulations can be inadequate to obtain such conformations, and we propose a novel methodology involving a coarse-grained conformational sampling approach instead. By extensively exploring the intrinsic flexibility of a protein with this approach, we produce a conformational ensemble from which we extract aï¾ singleï¾ conformation providing a good fit to the experimental HDX data. We successfully demonstrate the applicability of our method to four small and medium-sized proteins

    The Escherichia coli Peripheral Inner Membrane Proteome

    No full text
    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher.status: publishe

    Rapid label-free quantitative analysis of the E. coli BL21(DE3) inner membrane proteome

    No full text
    Biological membranes define cells and cellular compartments and are essential in regulating bidirectional flow of chemicals and signals. Characterizing their protein content therefore is required to determine their function, nevertheless, the comprehensive determination of membrane-embedded sub-proteomes remains challenging. Here, we experimentally characterized the inner membrane proteome (IMP) of the model organism E. coli BL21(DE3). We took advantage of the recent extensive re-annotation of the theoretical E. coli IMP regarding the sub-cellular localization of all its proteins. Using surface proteolysis of IMVs with variable chemical treatments followed by nanoLC-MS/MS analysis, we experimentally identified ∼45% of the expressed IMP in wild type E. coli BL21(DE3) with 242 proteins reported here for the first time. Using modified label-free approaches we quantified 220 IM proteins. Finally, we compared protein levels between wild type cells and those over-synthesizing the membrane-embedded translocation channel SecYEG proteins. We propose that this proteomics pipeline will be generally applicable to the determination of IMP from other bacteria. This article is protected by copyright. All rights reserved.status: publishe

    Native State of Complement Protein C3d Analysed via Hydrogen Exchange and Conformational Sampling

    No full text
    Hydrogen/deuterium exchange detected by mass spectrometry (HDXMS) provides valuable information on protein structure and dynamics. Although HDX-MS data is often interpreted using crystal structures, it was suggested that conformational ensembles produced by molecular dynamics simulations yield more accurate interpretations. In this paper, we analyse the complement protein C3d by performing an HDX-MS experiment, and evaluate several interpretation methodologies using an existing prediction model to derive HDX-MS data from protein structure. To interpret and refine C3d's HDX-MS data, we look for a conformation (or conformational ensemble) of C3d that allows computationally replicating this data. We confirm that crystal structures are not a good choice and suggest that conformational ensembles produced by molecular dynamics simulations might not always be satisfactory either. Finally, we show that coarse-grained conformational sampling of C3d produces a conformation from which its HDX-MS data can be replicated and refined

    Method development and validation for the quantitation of the complement inhibitor Cp40 in human and cynomolgus monkey plasma by UPLC-ESI-MS

    No full text
    Cp40 is a 14-amino acid cyclic analog of the peptidic complement inhibitor compstatin that binds with sub-nanomolar affinity to complement component C3 and has already shown promise in various models of complement-related diseases. The preclinical and clinical development of this compound requires a robust, accurate, and sensitive method for quantitatively monitoring Cp40 in biological samples. In this study, we describe the development and validation of an ultra-high performance liquid chromatography electrospray mass spectrometry method for the quantitation of Cp40 in human and non-human primate (NHP) plasma. Isotope-labeled Cp40 was used as an internal standard, allowing for the accurate and absolute quantitation of Cp40. Labeled and non-labeled Cp40 were extracted from plasma using reversed phase-solid phase extraction, with recovery rates exceeding 80%, indicating minor matrix effects. The triply charged states of Cp40 and isotope-labeled Cp40 were detected at m/z 596.60 and 600.34, respectively, via a Q-TOF mass spectrometer and were used for quantitation. The method was linear in the range of 0.18-3.58μg/mL (r(2)≥0.99), with precision values below 0.71% in NHP and 0.77% in human plasma. The accuracy of the method ranged from -2.17% to 17.99% in NHP and from -0.26% to 15.75% in human plasma. The method was successfully applied to the quantitation of Cp40 in cynomolgus monkey plasma after an initial intravenous bolus of 2mg/kg followed by repetitive subcutaneous administration at 1mg/kg. The high reproducibility, accuracy, and robustness of the method developed here render it suitable for drug monitoring of Cp40, and potentially other compstatin analogs, in both human and NHP plasma samples during pharmacokinetic and pharmacodynamic studies
    corecore