19 research outputs found

    The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation

    Get PDF
    Aims It is a dogma of cardiovascular pathophysiology that the increased cardiac mass in response to increased workload is produced by the hypertrophy of the pre-existing myocytes. The role, if any, of adult-resident endogenous cardiac stem/progenitor cells (eCSCs) and new cardiomyocyte formation in physiological cardiac remodelling remains unexplored. Methods and results In response to regular, intensity-controlled exercise training, adult rats respond with hypertrophy of the pre-existing myocytes. In addition, a significant number (∼7%) of smaller newly formed BrdU-positive cardiomyocytes are produced by the exercised animals. Capillary density significantly increased in exercised animals, balancing cardiomyogenesis with neo-angiogenesis. c-kitpos eCSCs increased their number and activated state in exercising vs. sedentary animals. c-kitpos eCSCs in exercised hearts showed an increased expression of transcription factors, indicative of their commitment to either the cardiomyocyte (Nkx2.5pos) or capillary (Ets-1pos) lineages. These adaptations were dependent on exercise duration and intensity. Insulin-like growth factor-1, transforming growth factor-β1, neuregulin-1, bone morphogenetic protein-10, and periostin were significantly up-regulated in cardiomyocytes of exercised vs. sedentary animals. These factors differentially stimulated c-kitpos eCSC proliferation and commitment in vitro, pointing to a similar role in vivo. Conclusion Intensity-controlled exercise training initiates myocardial remodelling through increased cardiomyocyte growth factor expression leading to cardiomyocyte hypertrophy and to activation and ensuing differentiation of c-kitpos eCSCs. This leads to the generation of new myocardial cells. These findings highlight the endogenous regenerative capacity of the adult heart, represented by the eCSCs, and the fact that the physiological cardiac adaptation to exercise stress is a combination of cardiomyocyte hypertrophy and hyperplasia (cardiomyocytes and capillaries)

    Technological properties and non-enzymatic browning of Lupinus albus protein-enriched spaghetti

    No full text
    Spaghetti was prepared by replacing semolina with different amounts of lupin protein, in order to increase the protein content. A detailed investigation of the rheological properties of the dough and the cooking quality of pasta was performed in comparison to standard semolina spaghetti. Moreover, the effect of the addition of lupin protein on non-enzymatic browning was evaluated by measuring epsilon-furoylmethyllysine (furosine) and 5-hydroxymethyl-2-furancarboxaldehyde (HMF), which are considered useful indices of semolina quality and pasta processing conditions. Dried spaghetti fortified with 5% of lupin protein isolate has a colour and rheological features comparable with the semolina sample and also the behaviour during cooking results to be satisfactory. As far as the thermal damage is concerned, the furosine values of fortified spaghetti differ only marginally from standard pasta and the percentage lysine loss is quite small (ranging from 12.1% to 15.7%)

    Compositional Differences of Greek Cheeses of Limited Production

    No full text
    Greece has a long tradition in cheesemaking, with 22 cheeses registered as protected designation of origin (PDO), 1 as protected geographical indication (PGI), and 1 applied for PGI. Several other cheeses are produced locally without any registration, which significantly contribute to the local economy. The present study investigated the composition (moisture, fat, salt, ash, and protein content), color parameters, and oxidative stability of cheeses that do not have a PDO/PGI certification, purchased from a Greek market. Milk and cheese types were correctly assigned for 62.8 and 82.1 % of samples, respectively, through discriminant analysis. The most important factors for milk type discrimination were L, a and b color attributes, salt, ash, fat-in-dry-matter, moisture-in-non-fat-substance, salt-in-moisture, and malondialdehyde contents, whereas a and b, and moisture, ash, fat, moisture-in-non-fat substance contents, and pH were the most influential characteristics for sample discrimination according to cheese type. A plausible explanation may be the differences in milk chemical composition between three animal species, namely cows, sheep, and goats and for the manufacture procedure and ripening. This is the very first report on the proximate analysis of these, largely ignored, chesses aiming to simulate interest for further study and production valorization
    corecore