33 research outputs found

    First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth

    Get PDF
    [1] We report measurements of pH, total alkalinity, air-ice CO2 fluxes (chamber method), and CaCO3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO3.6H2O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 µmol kg−1 melted FF, in the FF and is shown to decrease from 19 to 15 µmol kg−1 melted ice in the upper part and at the bottom of the ice, respectively. CO2 release due to precipitation of CaCO3 is estimated to be 50 µmol kg−1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 µmol kg−1 melted sample and corresponds to a CO2 release from the ice to the atmosphere ranging from 20 to 40 mmol m−2 d−1. This estimate is consistent with flux measurements of air-ice CO2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO2 to the atmosphere. CaCO3 precipitation during early ice growth appears to promote the release of CO2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor

    Impact of sea-ice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean

    Get PDF
    From sea-ice formation in November 2007 to onset of ice melt in May 2008, we studied the carbonate system in first-year Arctic sea ice, focusing on the impact of calcium-carbonate (CaCO3) saturation states of aragonite (ΩAr) and calcite (ΩCa) at the ice-water interface (UIW). Based on total inorganic carbon (CT) and total alkalinity (AT), and derived pH, CO2, carbonate ion ([CO32−]) concentrations and Ω, we investigated the major drivers such as brine rejection, CaCO3 precipitation, bacterial respiration, primary production and CO2-gas flux in sea ice, brine, frost flowers and UIW. We estimated large variability in sea-ice CT at the top, mid, and bottom ice. Changes due to CaCO3 and CO2-gas flux had large impact on CT in the whole ice core from March to May, bacterial respiration was important at the bottom ice during all months, and primary production in May. It was evident that the sea-ice processes had large impact on UIW, resulting in a five times larger seasonal amplitude of the carbonate system, relative to the upper 20 m. During ice formation, [CO2] increased by 30 µmol kg−1, [CO32−] decreased by 50 µmol kg−1, and the ΩAr decreased by 0.8 in the UIW due to CO2-enriched brine from solid CaCO3. Conversely, during ice melt, [CO32−] increased by 90 µmol kg−1 in the UIW, and Ω increased by 1.4 between March and May, likely due to CaCO3 dissolution and primary production. We estimated that increased ice melt would lead to enhanced oceanic uptake of inorganic carbon to the surface layer
    corecore