45 research outputs found

    The importance of the weak: Interaction modifiers in artificial spin ices

    Get PDF
    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics, and emergent magnetic properties, in e.g. artificial spin ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here we introduce a new approach: single interaction modifiers, using slave-mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane. We show that by placing these on the vertices of square artificial spin ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule obeying states in square artificial spin ice structures, enabling the exploration of thermal dynamics in a spin liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length-scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.Comment: 17 pages, including methods, 4 figures. Supplementary information contains 16 pages and 15 figure

    Evaluation of a clinical decision support tool for osteoporosis disease management: protocol for an interrupted time series design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis affects over 200 million people worldwide at a high cost to healthcare systems. Although guidelines on assessing and managing osteoporosis are available, many patients are not receiving appropriate diagnostic testing or treatment. Findings from a systematic review of osteoporosis interventions, a series of mixed-methods studies, and advice from experts in osteoporosis and human-factors engineering were used collectively to develop a multicomponent tool (targeted to family physicians and patients at risk for osteoporosis) that may support clinical decision making in osteoporosis disease management at the point of care.</p> <p>Methods</p> <p>A three-phased approach will be used to evaluate the osteoporosis tool. In phase 1, the tool will be implemented in three family practices. It will involve ensuring optimal functioning of the tool while minimizing disruption to usual practice. In phase 2, the tool will be pilot tested in a quasi-experimental interrupted time series (ITS) design to determine if it can improve osteoporosis disease management at the point of care. Phase 3 will involve conducting a qualitative postintervention follow-up study to better understand participants' experiences and perceived utility of the tool and readiness to adopt the tool at the point of care.</p> <p>Discussion</p> <p>The osteoporosis tool has the potential to make several contributions to the development and evaluation of complex, chronic disease interventions, such as the inclusion of an implementation strategy prior to conducting an evaluation study. Anticipated benefits of the tool may be to increase awareness for patients about osteoporosis and its associated risks and provide an opportunity to discuss a management plan with their physician, which may all facilitate patient self-management.</p

    A systematic review and meta-analysis to determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero.

    Get PDF
    OBJECTIVES: This systematic review was undertaken to define the diagnostic performance of in utero MR (iuMR) imaging when attempting to confirm, exclude or provide additional information compared with the information provided by prenatal ultrasound scans (USS) when there is a suspicion of foetal brain abnormality. METHODS: Electronic databases were searched as well as relevant journals and conference proceedings. Reference lists of applicable studies were also explored. Data extraction was conducted by two reviewers independently to identify relevant studies for inclusion in the review. Inclusion criteria were original research that reported the findings of prenatal USS and iuMR imaging and findings in terms of accuracy as judged by an outcome reference diagnosis for foetal brain abnormalities. RESULTS: 34 studies met the inclusion criteria which allowed diagnostic accuracy to be calculated in 959 cases, all of which had an outcome reference diagnosis determined by postnatal imaging, surgery or autopsy. iuMR imaging gave the correct diagnosis in 91 % which was an increase of 16 % above that achieved by USS alone. CONCLUSION: iuMR imaging makes a significant contribution to the diagnosis of foetal brain abnormalities, increasing the diagnostic accuracy achievable by USS alone. KEY POINTS: • Ultrasound is the primary modality for monitoring foetal brain development during pregnancy • iuMRI used together with ultrasound is more accurate for detecting foetal brain abnormalities • iuMR imaging is most helpful for detecting midline brain abnormalities • The moderate heterogeneity of reviewed studies may compromise findings
    corecore