37 research outputs found

    Eigenvector Approximation Leading to Exponential Speedup of Quantum Eigenvalue Calculation

    Full text link
    We present an efficient method for preparing the initial state required by the eigenvalue approximation quantum algorithm of Abrams and Lloyd. Our method can be applied when solving continuous Hermitian eigenproblems, e.g., the Schroedinger equation, on a discrete grid. We start with a classically obtained eigenvector for a problem discretized on a coarse grid, and we efficiently construct, quantum mechanically, an approximation of the same eigenvector on a fine grid. We use this approximation as the initial state for the eigenvalue estimation algorithm, and show the relationship between its success probability and the size of the coarse grid.Comment: 4 page

    Quantum algorithm and circuit design solving the Poisson equation

    Get PDF
    The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error \varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in \varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in New Journal of Physic
    corecore