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Abstract. We present a regularized solution to the shape from shadows problem. In this 
problem the shadows cast on an unknown surface yield data that can be used for the recon­
struction of this surface. In tl,· ~mulation presented here we assume that the data can now 
be perturbed by noise. It is SLown that the regularized approach produces a solution that 
can handle noisy information while being very similar to the solution obtained by the approx­
imation theoretic approaches used in earlier work. \Ve provide implementation runs where 
the performance of the algorithm in recovering unknown surfaces is tested. Furthermore. we 
study the \'isual effects of smoothing on the various reconstructions. 

1. Introduction 

The shape from shadows problem has been addressed in a series of papers [3. 4. 6]. where 
different formulations for its solution have been presented. In this problem. an unknown 
surface is reconstructed from the data that are derived from the shadows cast on it by a 
point light source located at a distance from this surface, see Fig. 1. 
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Figure 1. 



Shadows are a robust source of information. The process that uses shadows is not 
affected by texture or by surface reflectance. Furthermore. the imaging system does not 
need a grey scale or color capabilities; it is sufficient for it to be able to distinguish between 
black and white. Noise in the fonn of bright spots inside a dark area and ,;ce-versa can be 
filtered out easily. Consequently, thresholding coupled to a simple histograming process 
will yield clean shadowed areas. It is thus evident that shadows can be very useful tools 
for the reconstruction process. 

The data that can be obtained from the shadows include: 

1. The gradient of the function at the shadow boundary closer to the light source (start 
of the shadow), 

11. The difference between the value of the function at any point in the closest boundary 
and the value of the function at any point in the remote boundary (end of the 
shadow). 

lll. The fact that the unknown function will be underneath the plane defined by the 
light source and the shadow boundaries inside the area covered by them. 

IV. The actual location of the shadow boundary. 

\Ye will analyze how to use the shadow data later. 
In the work presented in [3, 4] the problem was solved assuming that the data are exact. 

Due to certain inadequacies of the imaging system the shadow data, and in particular the 
location of the shadow boundary, may not be recovered exactly. This type of noise can 
result in problems in the reconstruction processes and unsatisfactory performance of the 
employed algorithms. 

To overcome these problems t he principles of regularization theory will be employed. 
Regularization theory deals with methods for correctly defining ill-posed problems, and 
for selecting and imposing constraints in such a manner that the constrained problem 
becomes well-posed. The first definition of a well-posed problem. and consequently of an 
ill-posed problem is attributed to Hadamard [lJ. Problems can become ill-posed due to the 
presence of noise. as is often the case in computer vision. \Iany researchers have studied 
methods for solving ill-posed problems in general [9, 10], and problems with noisy data in 
particular. For a survey see [2, 5, ... SJ. 

In this paper we will define the problem using a regularization theory methodology. 
There is a \'ariety of methods for solving regularization problems. \Ve would like our 
solution to be as simple as possible. and if possible to be similar to the one presented in 
[3, 4]. \Ve will show that this can be achieved. 

The organization of the rest of this paper will be as follO\vs. In the next section we will 
provide some basics from regularization theory on which we will ba..<;e our analysis. 

In section 3 we will formally define the problem, and in particular the space of functions 
and the information that we will need to extract from the shadows. 

Section 4 contains the derivation of the regularized solution to the shape from shadmvs 
problem. This solution which we \'v;ll call 8moothing 8pline always exists and is unique 
regardless of the existence of noise. 

Finally. in section 5. we will discuss the implementation of the proposed algorithm, and 
provide a series of test runs for simulated and real shadow data. The effects of the noise in 
a non-regularized solution will be shown and this will he compared to a regularized one. 
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2. Aspects of regularization theory 

Assume that we have a metric space F that contains the unknown functions 1 that we 
want to recover. Also assume that we are given data il E U. where U is a normed metric 
space. A problem can be defined as an equation 

51= il, (2-1) 

for some operator 5 : F ---+ U. 
Solving a problem defined in the above manner is equivalent to obtaining a solution to 

the equation (2-1). This may not always be realizable. The solution may not exist, may 
not be unique. or if 5- 1 is discontinuous, it may not be stable. 

To solve the problem, one needs to define a non-negative continuous functional T : F ---+ 

IR+. called stabilizing functional. Various kinds of stabilizing functionals have been used. 
For example: 

1. ?\forms or semi-norms on Hilbert spaces [13, 14, 15]. 
11. The Tikhonov stabilizers [9. 10] 

p 

11/11;= L 
m=O 

A solution to the problem (2-1) is required to minimize the smoothing functional 

for some appropriately chosen A ~ O. 

(2-2) 

(2-3) 

By requiring minimization of (2-3) we are essentially narrowing the class of possible 
solutions. thus achieving existence. uniqueness and stability. There are many methods for 
obtaining a solution to (2-1) that minimizes (2-3). A detailed analysis can be found in the 
original work of Tikhonov in [9, 10]. and in a survey of this theory presented in [5]. 

The value of ,\ determines the weight between the two quantities of (2-3) that are to 
be minimized. For,\ close to zero the method emphasizes fidelity to the data, otherwise 
referred to as closeness 01 fit. For large ,\ the method lays emphasis on the minimization of 
T(·). In most cases this T is a measure of smoothness, hence a large A emphasizes smooth 
solutions. 

In other words, one could regard ,\ as a measure of our trust in the quality of the data. If 
we believe that the data are not corrupted then we can choose a small ,\ thus requiring from 
the reconstruction to be close to the data. If our belief in the quality of the data is low, 
then we choose a large A and we virtually smooth over the data and consequently over the 
noise. Since the quality of the data is not usually known, the appropriate choice of A is not 
an easy problem. It can be chosen so that the obtained solution satisfies certain heuristic 
criteria. A method that is often used is cross-t1alidation. It is based on a statistical analysis 
of the properties of the data. j\'fore information on cross-validation can be found in [15, 
16, 17]. 
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Regularization theory offers the ability to solve problems with noisy information. U n­
fortunately, the theory does not offer any methods that can be used to estimate the error 
of the resulting reconstructions, as is the case \vith the setting described in [3, 4]. It is 
thus obvious that there is a tradeoff in the choice of the method. If the noise in the image 
is negligible then it pays to solve the problem as proposed in [3, 4]. If not, as is the case 
in the assumptions for this paper, the regularization theory principles must be employed. l 

3. Problem formulation 

3.1 Function space - Definitions. 

Let, 

F = {I I I: (0.1]2 --+ IR, Dl.l I absolutely cont., IID2,2/11L2 ::; I}, (3-1) 

be the space that contains the functions I that we want to approximate. The quantity 
Di,i is defined as Di,i(.) = a

i
+

i
(.) ax'ay) . 

Define the bilinear form (', .) 

(3-2) 

and the semi-norm" ·11 = (', .)1/2. F. equipped with" . " is a metric space. 
Also define the stabilizing functional 

(3-3) 

3.2 Information. 

In the next step we will extract from the image( s) the information, that is contained in 
the shadows, and which will be denoted by JV(f). \Ve have already mentioned what types 
of information can be extracted from the shadows. It can be seen that this information 
exists at an infinite number of points. To sample at a finite number of points we have 
to adopt a sampling strategy. As mentioned in the introduction, assume that we have a 
light positioned far from the surface. 2 Also assume that the location of the light source is 
known. and that it is oriented in such a way that the light rays can be visualized as lying 
on planes parallel to the x-axis. \Ve draw k imaginary lines perpendicular to the y-axis, 
and we sample along these lines. The entire setup is shown in Fig. 2. 

At the intersection of each of the ].. lines with the shadowed areas we can obtain the 
following information. From the position of the light source. we can immediately obtain 
the partial derivative of the function I. with respect to x. at the point (Xi, yd, (Xi. yd 

1 Although there are formulations of the approximation problem where the noise can be assumed to have 
certain properties and where error bounds and optimality results can be obtained. Please see [11. 12] and 
references therein for more information. 
:! This way we can 3-<;sume that the light rays are parallel to each other. 
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Figure 2. 

being the beginning of the shadow (see Fig. 3). \Ve can also obtain the difference between 
the t\'w function values f(Xi, yd - f( Xi, Yi), at the beginning and at the end of the shadow 
respectively. given by M(xi. yd(x , - xd. 

For a light falling on the surface along the y-axis we can obtain similar information. In 
particular, for a given shadowed area starting at (Xi, yd, and ending at (Xi. Vi). we can 
obtain the partial derivative of f with respect to y and the difference f(Xj, Yi) - f(Xi. Y;) 

which is given by U(xi.yd(Yi - fli)· 

)( . • 
Figure 3. 

So. for e\'ery intersection of a sampling line and a shadowed region we can obtain a data 
pair of the form. 

(~~ (Xi, yd, f(x" y;) - f(ii. Yi)). Yi = Yi (3-4) 

or of the form. 

(3-5 ) 
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In each one of the images in our sample there are 0, 1 or more shadowed areas. From 
each one of those shadowed areas we can obtain a pair of the form (3-4) or (3-5). If we 
group all the data resulting from this sampling we obtain the vector, 

, c [81 81 81 81 
.1\(f) = 8X(Xl,Yd •... , 8x(XbYk). 8y(Xk+l.Yk+d, ... , 8y(Xn,Yn), 

1(XI,Yd-f(XI.fid, ... ,f(:rn. Yn)-f(Xn,Yn)]. (3-6) 

NU) is the data vector that contains the correct unperturbed data. These are unknmvn 
in our case. \Ve are instead given the perturbed data vector 11. 

Another piece of information can be obtained from the shadows. Assume that li(x, y) is 
the straight line segment passing through the points (Xi, Yi). (Xi, Yi). Then. in this interval 
the function 1 will have values smaller than li, see Fig. 3. It holds, 

(3-7) 

If the light falls in the direction along the y-axis, then the obtained inequality is 

(3-8) 

It is feasible to incorporate information like the above in our sample as has been shown 
in [3, 4]. From actual test runs though it has been noted that the inequalities (3-7) and 
(3-8) usually hold without being explicitly incorporated in the sample. To simplify our 
analysis we \vill not use this non-linear information any further. The interested reader is 
referred to the above bibliography for further details. 

4. Solution of the problem - The smoothing spline algorithm 

To solve the problem we need to find a function in F that minimizes the smoothing 
functional 

(4-1) 

It is known. see [11. 12] etc., that the spline a satisfies lIall ~ Ilfll, Vf E F. such that 
S(f) = N(a) = y. 

Then ( -1-1) becomes 

8),(f) ~ IIJV(f) - uW + ,\ IID 2
.
2 a1l 2 

2n 2 

= lIy- 11112 +,\ III:aigil1 
i=l 

2n 

= Ily - 11112 +,\ I: aiaj(9i,9j) 
i.)=l 

= II y - 11112 + ,\ (Ga. a) 

6 



2n 2n 

= 2:)Yi - ud2 +..\ L CijYiYj, ( 4-2) 
;=1 i,j=l 

where {gi L=I, ... ,2n are the representers of the information NU). They have the property 
(j,9i) = U(Xi.Y;) or U(Xi,Y;), fori = 1, ... ,n, and (j,gi) = j(Xi,y;)-j(Xj,y;), for 
i = n + 1 .... , 2n. 

\Ve want to minimize (4-2) with respect to Vi. Vi. Note that 0>'(0-) is actually a function 
of y. The minimum is attained when 80/ 8Yi = 0, V i. Then, 

80 2n 

a = 2 (Yi + u;) + ..\ 2 L CijYj = ° 
Yi j=l 

2n 

') y' + ') \ ~ C"y' = ') U· 
- 1 - A L I)) - 1 

j=l 

2Y+2..\G- 1 Y=2u 
GY+..\ y= GU. ( 4-3) 

Solving the system (4-3) will yield the unknown vector y that minimizes (4-1). Conse­
quently, the spline 0- = L aigi interpolating the data y minimizes (4-2). To construct the 
spline algorithm we can substitute G5 for yin (4-3).3 Then, (4-3) becomes 

GGa+..\Ga=Gu 
==;. (G + ..\ J) a =u. ( 4-4) 

(4-4) is a system of equations with unknown a. By solving it we can obtain the spline 

algorithm ySS(x, y) = L~~1 aigi(x, V). 

RDIARK 4.1. For..\ = 0 the algorithm yH interpolates the unperturbed data vector Y­
In this case ..pH coincides with the optimal spline algorithm proposed in [3. 4]. 

RDIARK 4.2. By formulating the regularization problem in such a way, we managed to 
obtain the same solution from two entirely different theoretical formulations. \Ve can 
therefore claim that in this setting. and for ..\ = 0. the regularization theory approach 
coincides with the approximation theoretic one. 

For ..\ =I 0 the algorithm :.pH does not interpolate the data u but passes close to them, 
how close depending on the magnitude of"\. This has a smoothing effect and for this 
reason y.9~ is called jmoothing jpline algorithm. 

3Gii = Y follows from (a-.gi) = Yi. 'Vi. This was also used in the derivation of (4-2). 



5. Application of the Algorithm - Numerical Runs 

5.1 Algorithm implementation. 

To implement the smoothing spline algorithm we must obtain the values of the coeffi­
cients aj. This is done by solving the system of equations (4-4) where G is the Gramm 

matrix {(gj, gj)} :.:=1 and {gdi=I ..... 2n are given by (I-I), (1-2), (1-3) and (1-4) of the Ap­
pendix. The system is solved by a direct method without the need for pivoting since it is 
full, symmetric. and positive definite. 

5.? Test runs. 

\Ve have constructed a broad series of functions, and have run the algorithm using these 
as test surfaces. Simulated shadows have been created using a computer program. This 
program is given the mathematical formula for the function that will act as the unknown 
surface and a series of light angles. It returns the locations of the beginning and the end 
of the simulated shadow and the partial derivatives of the function at that point. The test 
function is consequently forgotten. 

From early test runs. we have observed that smooth functions can be approximated easily 
with almost non-observable error. using a small number of sample points. The functions 
that are the most difficult to approximate, are the ones that have as low regularity as 
possible. In the class F these functions are piecewise quadratic polynomials which are 
constructed as the product of quadratic polynomials of one variable. \Ve will show the 
performance of the algorithm 'PH on these functions. 

\Ve start the series of test runs with a function consisting of 100 polynomial pieces. \Ve 
use two different light angles from each direction. two along the x-axis and two along the 
y-aXIS. The function and the obtained reconstruction can be seen in Figure 4. 

Figure -1. 

In Figure 5 we show a function consisting of 200 polynomial pieces. \Ve again draw the 
reconstruction together with the function for comparison purposes. The information was 
obtained by using -1 different lighting angles in each direction. 
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Figure 5. 

Finally, in Figure 6 we show one of the most difficult functions that \ve have constructed. 
It consists of 400 polynomial pieces with large jumps in the second derivatives. 4 The 
function has been approximated usmg a sample created by using six different lighting 
angles in each direction. 

Figure 6. 

:\s a next step we experimented with the application of our algorithm on actual images. 
--\. surface that could belong in the space F was constructed from \vood and cardboard is 
shown in Fig. 7. The camera was placed at a considerable distance from the surface, to 
a void perspective distortions. \Ve used a spotlight placed also at a distance, to simulate a 
point light source. The light was moved in different locations to create different shadowed 
nreas. and for every new position of the light we took a 256 by 256 image. The camera 
remained stationary throughout the experiment. 

For the particular test runs that we will be showing we used four different placements 
of the light. Each of the obtained images is like the one shown in Fig. 8. 

4 Which means that liD:?':? III ~ 1 does not hold. Instead, liD:?':? III ~ C, for large C holds. The mathemat­
ical formulation does not change. but the visual effect is noticeable. 
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Figure 7. 

Figure 8. Figure 9. 

Consequently. the intensity histogram of each one of the images was obtained, and they 
\\'pre thresholded accordingly. A. simple filtering algorithm was finally applied. One of the 
:T~ulting thrcsholded, filtered shadow images is shO\vn in Fig. 9. 

ShadO\v data were obtained from each of the four filtered images. Those were fed to the 
:dgorithm and resulted in the reconstruction shown in Figure 10. 

':>.3 The smoothing effect. 

"'e would like to show here the effect of smoothing on the reconstructions. and also 
("(mtmst the above results with ones that were produced without any smoothing (>. = 0). 

The effect of the noise on the data is more apparent as the size of the sample increases. 
\\-e will also intensify it by producing data \'lith low numerical accuracy. In Figure 11 
we present a reconstruction to the surface of Figure 4 obtained without any smoothing. 
The effect of the noise is observable as a jaggedness at the back of the reconstruction. 
:\pparcntly by increasing the value of >., the effects of the noise decrease and for>. = 0.5 
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Figure 10. 

Figure 11 

the resulting approximation does not show any noise effects. see Fig. II. 
Further increasing the value of ). will result in an even smoother reconstruction. see Fig. 

12. which will not be very close to the data. As discussed in section 2 the choice of a good 
\'alue for)' is not always obvious. 

6. Conclusion 

In this paper we showed how to obtain a regularized solution to the shape from shadows 
problem. This approach is useful \vhenever there is strong evidence that the data is noisy 
and will therefore create serious problems in the reconstruction obtained through pre .... iously 
studied methods. 

Since the amount of noise may not always be known we produced a solution that is 
~iI11ilar to the approximation theoretic one. The two solutions become identical in the 
absence of noise in the data. An advantage of our approach is that we can show that two 
seemingly different theoretical frameworks that have been used often for the solution of 
computer \'ision problems can yield similar solutions. 

Following the theoretical formulation of the problem. we presented a series of test runs. 
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Figure 12 

\Ve showed the effect of the noise on the reconstruction if no smoothing is allowed. Con­
sequently a series of test runs from simulated and from real shadow data were performed 
and the resulting reconstructions were presented along with the original surfaces. 

Appendix I. - The Representers of the Information 

The representers o. _le information N(f) are gi\Oen by : 

D
22 ( ) (Xi - X)~(Yi - Y)+ - (Xi-l - X)~(Yi-l - y)+ 

, 9 X Y = ~----..:......:.....-.:----:...~=====--.......:...........:....:....--....:....:..~ 
, • JXi - Xi-l . 

i = 1. .... k (1-1 ) 

when the light falls along the x-axis. and 

i = k + 1, .... n (1-2) 

for light along the y-axis. where (a - b)~ = 1 for a = band 0 otherwise. 

D 2
•
2 gn +i(X. Y) = (Xi - X)+Uii - Y)+ - (Xi - X)+(Yi - Y)+ - (Xi - X)~(Xi - X;)(Yi - Y)+, 

i=1, ... ,k (1-3) 

D 2
.
2 gn +,(X. y) = (Yi - Y)+(Xi - x)+ - (y, - Y)+(Xi - x)+ - (Yi - Y}~(Yi - Y;)(Xi - x)+. 

i = k + 1, ... , n (I -4 ) 

where (a - b)+ = a - b for a > band 0 otherwise. 
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