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Abstract
Weshowadivide and conquer approach for simulatingquantummechanical systemsonquantum
computers.We canobtain fast simulation algorithmsusingHamiltonian structure.Considering a sumof
Hamiltonianswe split them into groups, simulate each group separately, and combine thepartial results.
Simulation is customized to take advantage of theproperties of each group, andhence yield refinedbounds
to the overall simulation cost.We illustrate our results using the electronic structure problemofquantum
chemistry,whereweobtain significantly improved cost estimates under verymild assumptions.

1. Introduction

Classical simulationof quantummechanical systems is a verydifficult problem.The computational cost of thebest
classical deterministic algorithmknowngrows exponentiallywith the systemsize. In somecases classical randomized
algorithms, such asquantumMonteCarlo, havebeenused toovercome thedifficulties, but these algorithmsalsohave
limitations.On theotherhand, as Feynmanproposed [1], quantumcomputersmaybe able to carryout the simulation
more efficiently than classical computers. This led to a largebodyof researchdealingwithquantumalgorithms for
Hamiltonian simulation [2–29],withnumerous applications toproblems inphysics andchemistry [30–35].

In theHamiltonian simulationproblemone is given aHamiltonianH acting on qqubits, a time Ît , and an
accuracy demandε, and the goal is to derive an algorithmconstructing anoperator

~
U approximating theunitary

operator e−iHtwith error  e-~ - U e Hti measured in the spectral norm.When theHamiltonian is given
explicitly, the size of the quantumcircuit realizing the algorithm is its cost. Inparticular, the cost depends on the
complexity parameters q, t and ε−1.On theother hand,when theHamiltonian is givenby anoracle, the number of
queries (oracle calls)usedby the algorithmplays amajor role in its cost, in addition to the number of qubits and the
other necessary quantumoperations.Different types of queries have been considered in the literature. It is interesting
tonote that there are caseswhere the query complexity is low, butwhen considering the query implementation and
the resulting total gate count thepicturemaybequite different.We give such an example in section2.

There are papers that studyonly the query complexity. For example, [13]uses a splitting formula of order
+k2 1 [36, 37] to simulate   = å =      H H H H H, ...j

m
j m1 1 2 . It is assumed that theHamiltonianH is

given by an oracle (a ‘black box’), and thatH can bedecomposed efficiently by a quantumalgorithmusing oracle
calls into a sumofHamiltoniansHj, j=1,K,m, that individually canbe simulated efficiently. They approximate
e−iHtwith error εby a sequence ofNunitary operators of the form HH Î ¼ = ¼- ℓ{ }ℓℓ ℓ H H Ne , , , , 1, ,t

m
i

1 .
This kind of query has been considered innumerous other papers, see e.g., [2, 8, 10, 12, 19]. The cost of the
simulation is the total number of oracle calls,which is proportional to thenumber of exponentialsN. For each
HamiltonianHj appearing in the sequence, the algorithmmustmake oracle calls to simulate it. Inprinciple, since
theHj are obtained bydecomposingHby the algorithm, anoracle call to anyHj is simulated bymaking oracle calls
toH; see [10, section 5] for details.

Then [13] shows the number of exponentials is bounded from above by
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where · is the spectral norm.
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In this paperwe give a new approach for simulatingHamiltonians of the form

å=
=

( )H H . 2
j

m

j
1

Our approach is especially useful when the numberm ofHamiltoniansHj is large, andmany of theHj have
relatively small norm. SuchHamiltonians are common in physics and chemistry [31, 34, 35, 38–41]. For
example, a systemof interacting bodies or particles is described typically by aHamiltonian of the above form.

Without loss of generality, assume that theHj are indexed as

        ( )H H H... . 3m1 2

Formany problems, the norms Hj vary substantially, andmanyHamiltoniansmay have norm    H Hj 1 .
Then one can take advantage of the discrepancy between the norm sizes to derive fast simulation algorithms. The
main idea is as follows:

0 Partition the Hamiltonians H1, H2, K, Hm into groups using the magnitude of their norms Ideally
Hamiltonianswith similar normmagnitudes are grouped together.

1 Approximate e−iHt pretending that the sumofHamiltonians in each group can be simulated exactly.

2 Simulate the sumof theHamiltonians in each group separately with sufficient accuracy.

3 Combine all the group simulation results, by plugging them into the approximation of step 1, to get the
overall simulation ofH.

A rough top-level description of the procedure above applied to two groups and utilizing splitting formulas is
shown infigure 1 below.Nevertheless, our approach is not limited to splitting formulas.

Tomotivate this idea consider the bound (1)which depends particularly on  m H, 1 and H2 , and not on
¼   H H, , m3 . For the sake of argument, supposem is huge and    H H2 3 . Thenwe can split the

Hamiltonians in two groups {H1,H2} and {H3,K,Hm}, simulate +≔A H H1 2 and + +≔B H H... m3

independently, and then combine the partial simulation results using a splitting formula. Observe that e−iHt→

e−iAt as  H 03 and in the limit the total simulation cost becomes independent ofm. Thus in the limit the
bound (1) holds withm replaced by 2. This suggests that whenmanyHamiltonians are small in normone should
be able to improve the cost estimate(1) by partitioning them into groups and, for instance, using splitting
formulas of different orders aswe indicate infigure 1, andwewill explain in detail later.

An application enjoying these properties is the simulation of the Born–Oppenheimer approximate
electronicHamiltonian in the second quantized form [42, 43], i.e., theHamiltonian

 

å å= +
= =

( )† † †H h a a h a a a a
1

2
, 4

p q
pq p q

p q r s
pqrs p q r s

, 1 , , , 1

where a† and a are fermionic creation and annihilation operators respectively, and Îh h p q r, , , , ,pq pqrs

= ¼s 1, , , are provided as input and are computedwith respect to a selected set of single-particle basis
functions. This simulation problemhas beenwell-studied in the literature; see e.g. [17, 27–29, 31, 44–47]. The
number of single-particle basis functions  is typically chosen to be proportional to the number of particles in a
given problem. The best classical algorithms can reasonably solve problem instances with  in the range 50–70,
and it is believed that a quantum computer able to simulate problem instances with   100will solvemany
important applications ranging from chemical engineering to biology [45]. In these cases, the requiredmodest
number of qubits (typically Q( ) [48])makes these very attractive applications for early quantum computers.
Note that the cost ofHamiltonian simulation remains the primary bottleneck to solving this problemon a
quantum computer, despite themany recent advances in quantum simulation algorithms. To see this, even
without considering the other complexity parameters e-t , 1, the number ofHamiltonians is = Q( )m 4

in (4)which is substantial. Algorithms that have cost, say, proportional to Q( )9 , appear impractical because
for  = 100 wehave  = 109 18. Indeed, reducing the simulation cost dependence onm (or  ) for this
problemhas been the subject of considerable recent effort [27–29, 45–47]. Furthermore, inmany situations,
it has been observed that theHamiltonian norms vary significantly, andmany of them are relatively small
[43, 49]. It has been suggested that this could be used in someway to potentially reduce the simulation cost,
without any rigorous analysis [28, 46, 47, 49]. In contrast, in this paperwe develop algorithms that use the
discrepancy between sizes ofHamiltonian norms to speedupHamiltonian simulation andwe derive their
cost in full detail.

2
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1.1. Summary of themain results
For simplicity and brevity we only discuss here the case wherewe partition theHamiltonians in two groups, but
the idea extends tomany groups, as we show in section 3. LetH=A+B, with = å =

¢A Hi
m

i1 and
= å = ¢+B Hi m

m
i1 , for ¢ m m, where again        H H H... m1 2 . The bound (1) for the number of

queriesN scales withm as +m k2 1 2 , and our goal is to improve that.

1. Suppose we have two arbitrary algorithms t~ t-( )U eA
Ai and t~ t-( )U eB

Bi , simulating the Hamiltonians
A andB for a certain amount of time t Î , respectively.We showhow splitting formula structuremay be
used to combine

~
UA and

~
UB such that an approximation

~( )U t toU(t)=e−iHt is achieved. Indeed, slicing the
time t into n intervals of length t/n and using the Strang splitting formula [13]we get the overall
approximation

t t t t =~ ~ ~ ~ t t t- - - - ( ) ≔ ( ( ) ( ) ( )) ( ) ( )U t U U U
t

n
2 2 e e e e , with . 5A B A

n A B A n Hti 2 i i 2 i

Then to obtain e- =~ ( ) ( ) ( )U t U t O it suffices that t- ~t- ( )Ue 2A
A

i 2 and t- ~t- ( )Ue B
B

i are each
of order ε/n. Itmay be desirable to use higher-order splitting formulas instead of the Strang splitting
formula to combine the partial results, such that error and cost are further reduced2.
Inwhat followswe consider splitting formulas to derive

~
UA and

~
U ;B however, in principle, other applicable

simulation techniques can be used instead for
~
UA and

~
UB.Moreover, in practice criteria other than the

norms could be used potentially to group theHamiltonians, such as sparsity, commutativity, or unitarity or
any other property whichmay allow one to use an advantageous algorithm for simulating theHamiltonians
in that group.

2.We use splitting formulas (of orders +k2 1A and +k2 1B , respectively) to obtain the approximations
~ ( )U tA

and
~ ( )U tB , whichwe combinewith an order +k2 1 splitting formula. The resulting total number of

queriesN for simulatingH=A+B satisfies

Figure 1.Divide and conquer simulation. TheHamiltonians are split into two groups. The elements in each group are summed up to
formA andB, respectively. Pretending thatA andB can be simulated exactly we use them to simulateHwith a splitting formula of
order +k2 1. Thenwe independently simulateA andBwith sufficient accuracy using splitting formulas of order +k2 1A and

+k2 1B , respectively. Finally we combine simulations ofA andB (i.e., the partial simulation results)with the splitting formula of

order +k2 1 to obtain
~
U that simulatesHwith error ε.

2
The Strang formula and higher-order splitting formulas are discussed in section 3.2.
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 ¢ + - ¢+ - + -{ } ( ) { } ( )N m n n m m n n8 5 max , 4 5 max , , 6k k
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k k
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2 2A B

where

•  e    ( )( )n A t e B t16 k e k1 2 8

5

5

3
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• e= ¢ ¢
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   ( ) ( )n m H t m H t e7A
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-

   ( ) ( )( ) ( )n m m H t m m H t e14B m
e

m
k k k

1
64

5 2
1 2 5

3

B B
.

Roughly speaking, the two terms of the cost bound above correspond to the cost of simulating theHamiltonians
in the two groups formingA andB, respectively, plus some partitioning/recombining overhead that is captured
by themaximum function.
The novelty of the algorithm is that it uses substantially fewer exponentials to simulateHamiltonians of small
norm, relative to the number of exponentials required forHamiltonians ofmuch larger norm,whilemaintaining
the desired accuracy. In this respect, different time slices are chosen adaptively to simulateHamiltonians in
different groups. As a result, it is possible to use few exponentials to simulate a large number ofHamiltoniansHj

of relatively small norm for longer time slices, and this reduces the overall simulation cost.
We emphasize that even though the cost bound (6) appears complicated, implementing the algorithms achieving
this bound is straightforward; for example see (5).
Items 3 and 4 below illustrate the impact of the divide and conquer approach, relative to earlier work, as the
numberm of terms grows and becomes huge.
Item5 shows the practical advantage of the divide and conquer approach for the simulation of the electronic
Hamiltonian.

3. For the case k=kA=kB=O(1), and assuming that a large number ofHamiltonians have very small norm
such that - ¢ ¢¢+   ( )m m H m Hm 1 2 , we can select n so that  n n nA B and

e e= ¢ + - ¢ ¢+ +
¢+       ( ( ) ) (( ) ( ) )N O m H t H t O m m m H t H t .k k k

m
k2 1 2

1 2
1 2 1 1 2

1 1
1 2

In particular, when a relatively small number ofHj formA so that ¢ = ( )m O ma , andwhen
- ¢ =¢+   ( ) ( )m m H H O mm

b
1 2 , for 0�b�a<1, we have a speedup over the number of queries in

(1) since

=
- + -

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

N

N
O

m

1
a b k

prev
1 1 2

independently of et , , whereNprev denotes the upper bound shown in (1)with the same k. Observe that this
quantity goes to 0 as  ¥m .

4. In [10, 13, 19], it is shown how for splitting methods the order of the splitting formula may be selected
‘optimally’ such that the derived cost bound isminimized.We showhow the parameters k, kA, and kBmay
be similarly selected for our algorithm tominimize a cost upper bound. Let *Nprev and *N be the resulting
numbers of queries for the algorithm in [13] and for our algorithm, respectively.We show conditions for a
strong speedup over [13] in the sense that

*
*

e
¥

⟶N

N
t0 for fixed , .

mprev

5.We apply our algorithm to the approximate electronic Hamiltonian (4) of quantum chemistry. Let be the
number of single-particle basis functions. Thenumber ofHamiltonians in (4) is ( )O 4 .We can assume that
the largestHamiltoniannorm in the sum is constant. It is known that in practical cases a large number of
termshave very small norm [28, 46, 49]. This allowsus to dramatically improve the simulation cost. The table
that follows illustrates this point by comparing our techniques to others. Recall that the important complexity
parameter is  andnot ε.We express the costwith respect to  in table 1 below assuming et , are constants.
We remark that our cost estimates of  -5 7 are consistentwith empirical studies indicating that previous
cost and error estimatesmay beoverly conservative for practical applications [27].
We emphasize that standard circuits implementing the evolution of the terms in (4) can be incorporated into
our algorithmdirectly to yield its gate level implementation. For example, one canuse the circuits in [17]
which havebeen obtained through the Jordan–Wigner transformation to obtain a total gate count
proportional to thenumberofqueriesmultiplied by  . Alternatively, using theBravyi–Kitaev transformation
[50], the total gate count is proportional to the number of queriesmultiplied by log .

4
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In the remainder of this paper, we describe our general approach toHamiltonian simulation in detail, derive two
explicit algorithms that use splitting formulas for the group simulations, and consider their application to
quantum chemistry. The paper is organized as follows. In section 2, we discuss general considerations
concerning the query complexity and different types of queries forHamiltonian simulation. In section 3, we
review splittingmethods, discuss recursive splitting formulas, analyze generally the recombination of partial
simulation results. In section 4we give two algorithms forHamiltonian simulation and derive error and cost
bounds, and the speedup they offer. In section 5we apply our approach to simulating the electronicHamiltonian
and showhow formany practical problem instances our approach gives a significant speedup. Several of the
proofs of our results are included in the appendix.

2.General considerations forHamiltonian simulation

Webriefly discuss some considerations concerning algorithms dealingwith the query complexity of
Hamiltonian simulation. Aswe indicated, algorithms using splitting formulas assume that = å =H Hj

m
j1 is

given by an oracle, and the query complexity is the number of oracle calls the algorithmmakes and that is
proportional to the number of exponentials -e H ti j . It is further assumed that the exponentials -e H ti j can be
computed exactly, for otherwise any errormust be accounted for in the total error estimates.Whenwe are
dealingwith query complexity, the implementation cost of each -e H ti j is not a concern.However, any physical
realization of the algorithm should account for that as well. There are cases where the implementation cost of the
exponential is low, for example, when dealingwith the LaplacianΔ [51], or other operators that can be
diagonalized efficiently, as well as the terms of the electronicHamiltonian (4) as shown in [17, 50].

The algorithms in [10, 13], as well as the algorithms presented in the paper, use splitting formulas and
express the query complexity in terms of the norms of theHamiltonians comprisingH. The implementation of
these algorithms requires the knowledge of the normsThis could be a limitation, although there are applications
where adequate norm information is available or can be easily obtained. In certain applications involving partial
differential equations, the norms are known analytically. Furthermore, we do not require precise estimates of
these norms to implement our algorithms. Overestimates willmaintain the accuracywhile increasing the cost
accordingly. In the case of the computational chemistry problem that we consider,modulo constant factors, the
norms are given by the ∣ ∣ ∣ ∣h h,pq pqrs and are obtained by estimating the one-electron and two-electron integrals
numerically with sufficient accuracy. These integrals depend on the basis function set under consideration, and
are typically approximated on a classical computer.

An advantage of splittingmethods is that they lead to algorithms that are conceptually easy to understand
since they are products ofmatrix exponentials. They offer flexibility in the design and analysis of the algorithms
by allowing one to performpartial simulations and then combine their results, due to the fact that they can be
implemented recursively aswe show in section 3. They are deterministic in the sense that any repetition
produces the same outputwith exactly the same accuracy. The simulationmethods [24–26] do not have this
property. Finally, splittingmethods are regarded as having some appealing features for physics applications.
A splittingmethod ‘conserves important symmetries of the systemdynamics’, and has a ‘ remarkable advantage’
according to [52]. Suzuki also remarks that splittingmethods are particularly useful for studying quantum
coherence [36].

There are alternatives to splitting formulas. In particular, [24] uses a different type of query to simulate d-
sparseHamiltonians. Namely, one is given access to a d-sparseHamiltonianH acting on q qubits via a black box
that accepts a row index i and a number j between 1 and d, and returns the position and value of the jth nonzero
entry ofH in row i. The paper shows a clever technique applied in combinationwith oblivious amplitude

Table 1. Summary of the cost, expressed in terms of  , for different
algorithms for the simulation of the electronicHamiltonian (4). In
rows 1 and 3 the cost is expressed in terms of the number of queries. In
row 2 the cost is expressed as the total gate count.

Method Cost dependence on 

Splitting formulas [13, 45]  -8 9

Truncated Taylor series [29,
equation (46)]a

 8

Our algorithmswith local basis

functions

 -5 7

a The cost is improved to  5gates under strong assumptions on the

basis functions and the computation of hpq, hpqrs [29].

5

New J. Phys. 20 (2018) 043003 SHadfield andAPapageorgiou



amplification to derive an algorithm simulating d-sparseHamiltonianswith a number of queries

t t e
t e

t= =  
⎛
⎝⎜

⎞
⎠⎟ ( )N O d H t

log

loglog
, , 72

max

where · max is themaximumnorm. This is an important result. The dependence of the cost on ε−1 is
exponentially better in the latter case. However, this fact is not sufficient to conclude that the algorithm is
exponentially faster than previously known simulation algorithms, because the size of the other complexity
parameters, τ and particularly theHamiltonian norm H max, needs to be taken into account as well.

For instance, the spectral andmaximumnorms are proportional to dh−2 in the case whereH=−Δh+Vh

is amatrix obtained from the discretization of the d-variate LaplacianΔ and a uniformly bounded d-variate
potential functionV on a gridwithmesh size h [53]. In this case, the sparsity ofH isQ( )d . Thus, for univariate
functions the sparsity is constant. If we set e=h , both3 cost estimates (1) and (7) become polynomial in ε−1 and
there is no exponential speedup. It is easy to extend this argument to d-variate functions and the situation is
more interesting. In this caseH is amatrix of size e e´- -d d. For k=1 the bound (1) is proportional to

e-d t2.5 1.5

while that of (7), modulo polylog factors, is proportional to

e-d t.3 2

Both query estimates are low degree polynomials in each of the complexity parameters.Moreover, polynomial
improvements, such as reducing the exponent of d in (7) by one, as in [26], hardlymake a difference. This
situation is typical formatrices obtained from the discretization of ordinary and partial differential equations.
Wemay have an exponential speedupwhen τ is atmost polylogarithmic in ε−1, but this is not typically the case
in practice. Indeed [24] does notmention any practical situationwhere an exponential speedup is realized. These
considerations apply to other recent papers also showing polylogarithmic dependence on ε−1 of the query
complexity [25, 26].

It is interesting to observe that the query complexitymight be low and depend on ε−1 polylogarithmically as
in [25], yet when one considers the total gate count the picturemay be quite different. An example can be found
in [29, tables 1 and 2]which applies [25] to the simulation of the second-quantized electronicHamiltonian (4).
In particular the query complexity is proportional to t 4 times a quantity polylogarithmic in t , and ε−1,
while the total gate count is proportional to t 8 times a quantity polylogarithmic in t , and ε−1.
Improvements of the gate count are possible under significant assumptions on the class of basis functions used
and assumptions about the cost and accuracy in computing the hpq and hpqrs by the quantumalgorithm.
Moreover, in chemistry the desired accuracy is not arbitrarily small [28] and thus itmay impact the cost only by a
constant factor. The important parameter is  which is the number of single-particle basis functions used in the
approximation of the Born–Oppenheimer electronicHamiltonian. Larger values of  givemore accurate
approximations of theHamiltonian operator.

Although improving exponentially the dependence of the simulation cost on ε−1 is very significant, there are
other issues as well to consider.We alreadymentioned that the other complexity parametersmay be dominant.
The particular type of queries used assumes that one has precomputed and stored the positions and values of all
nonzero entries for every single row of theHamiltonian. This is also discussed in [54]. Simulation algorithms
relying on oblivious amplitude amplification are probabilistic. Thismeans that for applications where numerous
Hamiltonian simulations need to be carried out, such as in phase estimation, the overall success probabilitymust
be boosted. In particular,making oblivious amplitude amplification deterministic requires a special rotation
denoted by S in [24,figure 2]. This rotation depends on the exact computation (i.e., with potentially infinitely
many bits of accuracy) of a numerical expression that depends on the input data, and the physical
implementation of this rotationmust be exact using quantumgates from afinite universal set. The cost of this
can be immense and this is not explained in [24]which onlymentions that such a rotation S exists. The difficulty
in obtaining a deterministic algorithm is a numerical stability consideration.

3.Divide and conquer approach toHamiltonian simulation

Wenow formalize themain ideas of our approach, and give preliminary analysis of the general case where
arbitrary simulation algorithmsmay be used for the simulation of different groups ofHamiltonians.Wefirst
review some details of quantumalgorithms based on high-order splitting formulas. In particular, the analysis of

3
Whendealingwith partial differential equations, themesh size h determines the discretization error, which subject to smoothness

conditions often isO(hα), for someα>0. In terms of the partial differential equation, the combination of the discretization error and the
simulation error will determine the accuracy of thefinal result. In this sense h and ε are related.

6
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our algorithms in later sectionwill generalize that of [10, 13]. Along theway, we have derived slightly tighter
results than those of [13] for the usual application of splitting formulas, andwe include them in the appendix.

Our goal is to take theHamiltonian simulation problem and partition it into a number of smaller and
simplerHamiltonian simulation problems, then solve each one of them, and combine the results. The splitting
should be customized to take advantage of the properties of each of the subproblems, yielding refined bounds for
the overall simulation cost.

In certain applications, for instance in chemistry, Hamiltonianswith very small norm can be discarded from
the sum (2), to the extent that this does not affect the desired accuracy.

3.1.Hamiltonians that do not affect the accuracy can be ignored
We formalize the notion thatHamiltonians of very small norm relative to the accuracy εmay be discarded, and it
suffices to consider the simulation problem for the remainingHamiltonians. Thismay substantially reduce the
cost, particularly for problemswhere ε is not arbitrarily small.

Proposition 1. Let = +H A B where H A B, , areHamiltonians, >t 0, and e > 0. If

 e  ( )B t 2, 8

and
~
U is such that  e- ~- Ue 2Ati then  e- ~- Ue Hti .

The proof the proposition is shown in the appendix. Thus, when the conditions of the proposition are
satisfied, simulatingAwith error e 2 implies the simulation ofHwith error ε.

Remark 1.Equation (8) implies that the aggregate normof the discardedHamiltoniansmust be small, not just the
normsof eachof thediscardedHamiltonians.Generally,Hamiltonians cannot be discardedwithout considering
howmany they are and themagnitudes of the other problemparameters for theparticular problem instance.

If = å = ¢+B Hj m
m

j1 , then a sufficient condition for theHamiltoniansHj inB to satisfy (8) is
4

 e
- ¢

= ¢ + ¼ 
( )

( )H
m m t

j m m
2

, 1, , . 9j

In practical applications a large number of ‘negligible’Hamiltonians are sometimes discarded, often using
heuristics. For example, in quantum chemistry, an ad hoc fixed cutoff parameter, say 10−10, is used [43].
However, in general the effect of discarding termsmust be accounted for in the error analysis.

Wewill assume that possible discardingofHamiltonians according toproposition 1mayhavehappened as a
preprocessing step.Our results andproof techniques donot dependonwhetherHamiltonianshavebeendiscarded
ornot. Thus, from this point onmwill refer to the total numberofHamiltonians thatwe consider for our algorithms.

3.2. Review of high-order splitting formulas
Splitting formulas are a family of operator approximations based on the Lie–Trotter product formula

=
¥

- - - -( ) ( )lim e e ... e e . 10
n

H t n H t n H t n n Hti i i im1 2

Using this formulawithfinite n gives an approximation of e−iHt.Without loss of generality, and to avoid dealing
with absolute values, wewill assume >t 0. Selecting n, often called theTrotter number, large enough such that
the time sliceD ≔t t n 1, we approximate - De H ti by =

- Dej
m H t

1
i j with errorO(Δ t 2). This gives a second-

order approximation. A third-order approximation is given by the Strang splitting formula

D = ¼ D = - D - D - D - D - D - D- -( ) ( ) ( )S t S H H t, , , e e ... e e e ... e , 11m
H t H t H t H t H t H t

2 2 1
i 2 i 2 i 2 i i 2 i 2m m m1 2 1 1 1

with5

= D + D D - D ( ) ( )S t O t te , as 0.H ti
2

3

Applying S2(Δ t) over each time sliceΔt yields the approximation

= D~ ( ( ))U S t ,n
2

where - ~ U U 0 asD t 0. Assume for themoment thatΔt is chosen such that the number of time slices
n=t/Δt is indeed a positive integer. Otherwise, wewould have = D⌈ ⌉n t t , and a single differentfinal time
sliceD ¢ - D D < D≔ ⌊ ⌋t t t t t t .

4
Note that [46, equation (24)] considers discardingHamiltonians in the context of eigenvalue estimation and derives a similar condition to

(9), butwithout the factor of twhich is important for simulation.
5
For simplicity, when the underlyingHamiltonian decomposition is clear wewill use S2(Δt) in place of S2(H1, ...,Hm,Δt).
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Suzuki [36, 37] gave high-order splitting formulas. These are recursive formulas S2k of order + Îk k2 1, ,
approximating e−iHΔt to error D +( )O t k2 1 . They are defined by

D = D D D- - -( ) [ ( )] ( ) [ ( )] ( )( ) ( ) ( )S t S p t S q t S p t , 12k k k k k k k2 2 1
2

2 1 2 1
2

for k=2, 3, ..., with = - - -( )( )p 4 4k
k1 2 1 1 and = -q p1 4k k. Applying D( )S tk2 over each time sliceΔt and

unwinding the recurrence relation yields a product ofN exponentials

HH å= ¼ = Î ¼ =~

=

-

=

( ( )) { } ( )
ℓ

ℓ
ℓ

ℓℓ ℓU S H H t n H H t n mt, , , e , , , , . 13k m
n

N
t n

m

N

2 1
1

i
1

1

It is important to observe that Suzuki’s formulas hold asymptotically for sufficiently smallΔ t, and do not
reveal the dependence of the error onm or the norms = ¼ H j m, 1, ,j . Application of these formulas requires
explicit calculation of the prefactors in the error bounds. Typically, cost estimates for splittingmethods are
expressed as the product of the number of time slices and the number of exponentials required to carry out the
simulationwithin each time slice. In particular, the estimates for the simulation error and cost in [13] depend on

em k, , , the largest norm H1 , and the second largest norm H2 . In [13, section 4] the quantityM is defined as

e
=

-  ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )M

emt H em4 4

3

5

3
, 14

k k
2

1 2 1

and the time slice is given byD = - ( )t M H1
1. Hence the number of intervals is = D =  ⌈ ⌉ ⌈ ⌉n t t M H t1 .

Note that choosingM larger than necessary decreases the simulation error. Under the (weak) assumption
e> emt H4 2 , [13, theorem 2] shows an upper bound for the number of exponentials


e

- -
-

 
  ⎜ ⎟

⎡

⎢
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎤

⎥
⎥⎥(( ) ) · ( )N m H t

emt H em
2 1 5

4 4

3

5

3
. 15k k k

1
1

2
1
2 1

This bound is derived as the product of two termsThefirst factor is the number of exponentials per time slice,
which is bounded by - -( )m2 1 5k 1. The second factor is equal to nwhich bounds the number of time slices.
Note that if the argument of the ceiling function is atmost one, a single time interval suffices for the simulation.
The cost bounds in section 4 for algorithms 1 and 2 are generalizations of (15).

Recall that the upper bound (15) does not account for anyfiner problem structure, such as the possibility
that a number ofHamiltonians have norms significantly smaller than H2 . TheHamiltoniansmay be
partitioned into groups based on their relative norms, and each group simulated independently with our
algorithms. This leads us to refined cost estimates which depend not just on  m H, 1 , and H2 , but on the
number ofHamiltonians in each group and largestHamiltonian normwithin each group.

Furthermore, underweak conditionswhich guarantee the argument of the ceiling function in (15) is at least
one (e.g., for sufficiently large  m H t, ,1 , or e1 ), (15)may be bounded to obtain


e

- -
-

 
  ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠(( ) ) · ≕ ( ) ( )N m H t

emt H em
N k2 1 5 2

4 4

3

5

3
, 16k k k

1
1

2
1
2 1

and from this [13, section 5] shows the ‘optimal’ k (in the sense ofminimizing the upper boundN(k)),

*
e
 ⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

≔ ( )k
emt H

max round
1

2
log

4
, 1 . 1725 3

2

Setting *=k k gives the upper bound for the number ofmatrix exponentials

* - e 
 

( ) ≕ ( )N
e

m m H t e N
8

3
2 1 . 181

2 ln ln
emt H1

2
25
3

4 2

Wewill be comparing our results against this estimate.
Further observe that *k is given by an extremely slow-growing function of the problemparameters. For

example, for the values e= = = =- m t H 102
1 10, (17) gives * =k 5. Therefore, inmost practical cases, one

can determine the optimal value of k by inspection, without carrying out a formal analysis.

3.3. Recursive splitting formulas
Our discussion in this section can be extended to high-order splittingmethods. However, for brevity we
consider the Trotter formula to illustrate the ideas.

Suppose the numberm ofHamiltonians is large, andwe are given a partition, specified by some number
¢ <m m, as

= + + + + + +¢ ¢+≔ ( ) ( ) ( )H A B H H H H... ... . 19m m m1 1
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Weconsider partitions into two groups tomake the ideas of this section clear; it is straightforward to extend to
an arbitrary number of groupsμ. AsA andB are themselvesHamiltonians, wemay apply the Lie–Trotter
formulawith respect to them to give

=
¥

- - -( ) ( )lim e e e . 20
n

At n Bt n n Hti i i

Thuswe see that if we are able to approximate -e At ni and -e Bt ni thenwe should be able to combine the
approximations as in (20) to approximate e−iHt. On the other hand, we can recursively apply (10) to e−iAt/n and
e−iBt/n to obtain

=
a

a a a

b

b b b

¥ ¥

- -

¥

- - -¢ ¢+
⎛
⎝⎜

⎞
⎠⎟( ) ( )lim lim e ... e lim e ... e e .

n

H t n H t n H t n H t n
n

Hti i i i im m m1 1

The limitsmay be taken outside and in any order, which yields the recursed Lie–Trotter formula

=
a b

a a a b b b

¥

- - - - -¢ ¢+(( ) ( ) ) ( )lim e ... e e ... e e . 21
n

H t n H t n H t n H t n n Ht

, ,

i i i i im m m1 1

Compared to (10), there are now three parameters n,α,β in (21)which reduce the error of the truncated
product approximation as they are increased. Suppose    ℓH H1 for some 1<ℓ=m; then, grouping the
largeHamiltonians inA and the remainingHamiltonians inB, it follows thatwemaywant to takeα>β as to
reduce the overall error, while keepingβ relatively small to reduce the overall cost.Wewill shortly derive divide
and conquer simulation algorithms based on splitting formulas whichwill take three parameters k, kA, kB
specifying the order of each formula. Thuswemay use a high-order splitting formula forA and a low-order
splitting formula (and also larger time slices) forB, without compromising the error and such that the overall
cost is reduced. Recall thatmethodswhich do not distinguish betweenA andBwould spend the considerably
more effort required for the simulation ofA in the simulation ofB as well.

We remark that generalizing (21) tomore than two groups ofHamiltonians gives a Trotter step parameterαi

for each group. Alternatively, this formula could be recursed deeper by further decomposingA andB into
subgroups ofHamiltonians and again applying (10).

3.4. Combining different simulationmethods
Consider aHamiltonian as in (2), (3), andU=e−iHt. Assume theHj have been partitioned intoμ=O(1)
disjoint groups, wherewe denote byA1,K,Aμ the sums of theHamiltonians in the respective groups.We are
not concernedwith how the partitioning is done at this point. Aswewill see later, the partitioning can be done
adaptively and follows from general cost estimates. In practice small values ofμwill suffice andwewill see an
example in section 5.

LetH=A1+...+Aμ. Assume theAj have been indexed so that   m     A A A...1 2 . Supposewe
divide the simulation time t into intervals D = Ît t n n, ; wewill select n later. Applying a high-order
splitting formula of order +k2 1with respect to this partition yields the operator

AA å m¼ = Î ¼ =m m
=

-

=

m m


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟≔ ( ( )) { } ( )

ℓ
ℓ

ℓ
ℓℓ ℓU S A A t n A A t t, , , e , , , , , 22k

n
N

t n

n N

2 1
1

i
1

1

k k, ,

where m= -m
-( )N 2 1 5k

k
,

1, and ¼ m( )S A A t n, , ,k2 1 is given in (12). Then, if we have algorithms t~ ( )UAj
to

simulate (approximately) each exponential t-e Ai j in the right-hand side above, we can substitute them into (22)
and obtain the approximation

AA å m¼ = Î ¼ =~ ~
m m

= =

m m


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟≔ ( ( )) ( ) { } ( )

ℓ
ℓ ℓ

ℓ
ℓℓU S A A t n U t n A A t t, , , , , , , . 23k

n
N n N

2 1
1

1
1

k k, ,

Weemphasize ¼ m ( )S A A t n, , ,k2 1 is constructed by expanding ¼ m( )S A A t n, , ,k2 1 as an ordered product of

exponentials A- ℓ ℓe ti and replacing each A- ℓ ℓe ti with A
~ ( )ℓℓU t . The precise ordering of the product is obtained

from the particular choice of the splitting formula of order +k2 1; see [36, 37]. For example, using the Strang
formula, for k=1we have

¼ = ~ ~ ~ ~ ~ ~
m m m m- -

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S A A t n U t n U t n U t n U t n U t n U t n, , , 2 2 ... 2 2 ... 2 . 24A A A A A A2 1 1 2 1 1 1

In principle, any availablemethodmay be used to implement the approximations
~
UAj

, with the possibility of
using different subroutines for different j.

We bound the overall error by

- - + -~ ~       ( )U U U U U U . 25

We refer to - U U and - ~ U U as thefirst-step error and second-step error, respectively. Clearly, if both

error terms are e( )O , then so is the overall error - ~ U U .
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Thefirst-step error depends only on the splitting formula used at thefirst step, and is independent of the
subroutines used to simulate each group at the second step.We have

- = - ¼ - ¼m m
- -      ( ) ( ( )) ( ) ( )U U S A A t n n S A A t ne , , , e , , , , 26Ht n n

k
n Ht n

k
i

2 1
i

2 1

where - ¼ m
- ( )S A A t ne , , ,Ht n

k
i

2 1 is the error of S2k over a single time slice. Following the approach of [13]
(see (14)) for the simulation of a sumofμ-manyHamiltonians, we define the quantity

m
e

m
=

-  ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )M

e t A e4

2

4

3

5

3
, 27

k k
2

1 2 1

which gives the first-step time slice size asD - ≔ ( )t M A1
1. The number offirst-step time slices is

=  ⌈ ⌉n M A t1 . Observe that the final time slicemay be smaller thanΔt.With this inmind, for simplicity we
assume  M A t1 is an integer.

The second-step error is

A
A

A
A





 

å

- = ¼ - ¼

-

-

~

~

~

m m

=

-

=

=

-

m m

m

   

 

 ( ) ( )

( )

( ) ( )

ℓ ℓ
ℓ

ℓ
ℓ

ℓ ℓ
ℓ

ℓ ℓ
ℓ

U U S A A t n S A A t n

n U t n

n U t n

, , , , , ,

e

e . 28

k
n

k
n

N
t n

N

N
t n

2 1 2 1

1

i

1

1

i

k k

k

, ,

,

Hence, a sufficient condition for  e- ~ U U 2 is that the error of each stage satisfies

A
A  e

- ~

m

- ( )ℓℓ ℓ
ℓU t n

N n
e

2
.t n

k

i

,

Assume the cost A= ( )ℓ ℓ ℓN N t n, of each simulation subroutine A
~ ( )ℓℓU t n is expressed in terms of the

number of exponentials of the form -e H zi j , where theHj belong to the group formingAℓ, for suitable values
Îz . The total simulation cost is the number of time slices n times the cost per time slice. The latter is

å
=

m

ℓ
ℓN .

N

1

k,

Therefore the total simulation cost is

å=
=

m⎛
⎝
⎜⎜

⎞
⎠
⎟⎟· ( )ℓN n N . 29

j

N

1

k,

Weremark that the results of [13] are important forour analysis. Specifically, they showhowthe simulationcost
dependson the largest and second largestHamiltoniannorms,which translateshere toadependenceon A1 and A2 .

4. Algorithms

Wegive two algorithms using recursive splitting formulas, and derive worst-case error and cost bounds.
Consider againHamiltonians of the form = å =H Hi

m
i1 , wherem is large. Recall that one of our goals is to

reduce the dependence of the simulation cost onm; particularly for problemswhere there is a substantial
difference between the largest and smallestHamiltonian norms, andwhere the number ofHamiltonianswith
relatively small norm is significant.

Consider (2), (3), and the partitioningH=A+B given in (19). The two algorithmswe present are based on
figure 1. Algorithm1 is a special case of algorithm 2. The difference between them is that algorithm1 uses k=1,
while algorithm2 considers a general k in step 1. Even though this differencemight appear insignificant, the
analysis of algorithm 2 turns out to bemuchmore complicated. Algorithm1 is simpler to understand and
implement. On the other hand, algorithm2 ismore general, offering one the possibility to reduce the number of
exponentials by selecting k optimally, as wewill see later.

4.1. Algorithm1
The construction of algorithm1 follows that of section 3.4 for the general case, applied to the partition
H=A+B. At the first step, applying the Strang splitting formula, k=1, gives the operators

D = - D - D - D ≔ ( ( )) ( ) ( )U S A B t, , e e e , 30n A t B t A t n
2

i 2 i i 2

whereΔ t=t/n andwewill define n below; see figure 1. For the second step, algorithm1 approximates the
operators e−iAΔ t/2 and - De B ti using different high-order splitting formulas D~ ( )U t 2A and D~ ( )U tB , of orders
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+k2 1A and +k2 1B , respectively. This yields the overall approximation
~
U ofU=e−iHtwhich is defined by

D = D D D~ ~ ~ ~≔ ( ( )) ( ( ) ( ) ( )) ( )U S A B t U t U t U t, , 2 2 . 31n
A B A

n
2

Note that in general D D ¹ D~ ~ ~( ) ( ) ( )U t U t U t2 2A A A .
As in [13] let


 


¢

¢ <¢+

 
 ⎪

⎧⎨
⎩≔

( )
( )

H H j m

H H m j m

1

.
j

j

j m

1

1

For splitting formulas, such a rescaling of theHamiltonian norms is equivalent to a rescaling of the respective
group simulation times, i.e.,   t t¼ = ¼¢ ¢ ( ) ( )S H S H H, , , , , ,k m k m2 1 1 2 1A A

and
  t t¼ = ¼¢+ ¢+ ¢+ ( ) ( )S H S H H, , , , , ,k m m m k m m2 1 1 2 1B B

. Observe that theHamiltonians inA andB are
rescaled by different quantities, which in general leads to different simulation times forA and forB.

The time slice sizes for simulating D~ ( )U t 2A and D~ ( )U tB are 1/MA and 1/MB, respectively, whereMA and
MB are defined below. Thus, applying splitting formulas of orders 2kA+1 and +k2 1B forUA andUB,
respectively, gives

    dD ¼ ¼~
¢

D
¢

 ( ) ≔ ( ) ( ) ( )⌊ ⌋U t S M S M2 , , , 1 , , , , 32A k m A
M H t

k m A A2 1
2

2 1A
A

A
1

    dD ¼ ¼~
¢+

D
¢+¢+ ( ) ≔ ( ) ( ) ( )⌊ ⌋U t S M S M, , , 1 , , , . 33B k m m B

M H t
k m m B B2 1 2 1B

B m
B

1

Sincewe have effectively rescaled the simulation times by dividing by the respective largest Hamiltonian norms,
we are actually subdividing an interval of size D H t 21 into D ⌈ ⌉M H t 2A 1 intervals of length atmost 1/MA

for the simulation of D~ ( )U t 2A , and into D¢+ ⌈ ⌉M H tB m 1 intervals of length atmost 1/MB for D~ ( )U tB . Clearly,
the last of these subintervals in either casemay have length less than 1/MA or 1/MB, respectively. In such a case,
the length of the last subinterval is equal to δA/MA or δB/MB, with d D - D   ≔ ⌊ ⌋M H t M H t2 2A A A1 1 and
d D - D¢+ ¢+   ≔ ⌊ ⌋M H t M H tB B m B m1 1 , respectively. That is the reasonwhywe have taken the floors of the
exponents in thefirst factors of (32) and (33).

From (25), we have

- - + -~ ~       ( )U U U U U U . 34

Thus, to guarantee  e- ~ U U , we require  e- U U 2 and  e- ~ U U 2.
We consider each error term separately. Thefirst error term in (34) is independent of our implementations

of
~
UA and

~
UB, and results only from the first-step Strang splitting and time slice size D = Ît t n n, . From

lemma 2 in the appendix, we have

- D         · { } ( )U U t t A B A B
2

3
max , . 352

From (29) the cost of our algorithm is proportional to n, and therefore wewould like tominimize this quantity.
Setting the right-hand side of the equation above to e 2we obtain

 e      { } ( )n t A B A B4 max , 3 . 363

For instance, when    A B , from the triangle inequality bounds  ¢   A m H1 and
 - ¢ ¢+   ( )B m m Hm 1 , to obtain  e- U U 2 it therefore suffices to select n as

e¢ - ¢ ¢+   ≔ ⌈ ( ) ⌉ ( )n m H t m m H t4 3 . 37m1 1

Now consider the second error term in (34). As = =   S S 12 2 , we have (see equation (28))





- = D - D D - D

- D D D

- D + - D

~

~ ~ ~

~ ~
- D - D - D

- D - D

     

 

   

  ( ) ( ) ( ) ( )
( ) ( ) ( )

( ( ) ( ) )

U U S A B t S A B t n S A B t S A B t

n U t U t U t

n U t U t

, , , , , , , ,

e e e 2 2

2 e 2 e ,

n n

A t B t A t
A B A

A t
A

B t
B

2 2 2 2

i 2 i i 2

i 2 i

where the terms - D~- D ( )U te 2A t
A

i 2 and - D~- D ( )U te B t
B

i bound the error of each D~ ( )U t 2A and

D~ ( )U tB . Hence, to ensure  e- ~ U U 2, we require

 e e- D - D~ ~- D - D   ( ) ( ) ( )U t n U t ne 2 8 and e 4 . 38A t
A

B t
B

i 2 i

ThequantityMA is definedby applying (14) to the simulationofAwith time t n2 and error atmost e n8 , to obtain

e e
=

¢ ¢
=

¢ ¢- -   ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ≔ ( )

( )
M M k

em t n H

n

em em t H em4 2

8

4

3

5

3

16 4

3

5

3
.A A A

k k k k
2

1 2 1
2

1 2 1A A A A

Remarkably, observe that the factors ofnhave canceled, i.e., the time interval size for each applicationof D~ ( )U t 2A

depends only on the original problem time and errorparameters andnot on thenumber of time slicesnwe
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subdivided t into. Further note thatwhen  e¢  em t H16 2 , thenMA is bounded fromabove independently ofε.
Thismeans thatwe are dealingwith an easy problem for the simulation ofA, so the interesting case iswhen

e¢ > em t H16 2 , andwewill consider this case fromnowon. Similar considerations apply to the simulationofB.
To bound the cost of each D~ ( )U t 2A , we apply [13, theorem 1]. Thus, the number of exponentialsNA

required for each application of D~ ( )U t 2A satisfies

 ¢ - D-  ( ) ⌈ ⌉N m M H t2 1 5 2 .A
k

A
1

1
A

Wehave alreadymentioned that the quantity D ⌈ ⌉M H t 2A 1 gives the number of subintervals of length atmost
1/MA that each time slice D H t 21 is subdivided.When the ceiling function argument is atmost one, no
subdivision is necessary. Then itmay be possible to reduce the cost further by decreasing kA.

Now consider D~ ( )U tB . For the simulation ofB for timeΔ t=t/n and error atmost e n4 , we setMB(kB) as
in (14) to obtain

e

e

=
- ¢ - ¢

=
- ¢ - ¢

¢+
-

¢+
-
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⎛
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⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( ) ≔ ( )( )
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( )

( ) ( )

M M k
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e m m

e m m t H e m m

4

4

4

3
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3

16 4

3

5

3
.

B B B
m

k k

m
k k

2
1 2 1

2
1 2 1

B B

B B

Once again,MB is independent of n. As above, the interesting case is when e- ¢ >¢+ ( )e m m H t16 m 2 , because
otherwiseMBwould be independent of εand the problemwould be easy. Applying again [13, theorem 1], the
numberNB of exponentials for each application of D~ ( )U tB satisfies

 - ¢ - D-
¢+ ( ( ) ) ⌈ ⌉N m m M H t2 1 5 .B

k
B m

1
1

B

In this case the quantity D¢+ ⌈ ⌉M H tB m 1 gives the number of subintervals of length atmost 1/MB that each time
interval of size D¢+ H tm 1 is subdivided.

Wemay nowbound the total cost of our algorithm, i.e., bound the numberN of exponentials of the form
Î ¼- { }ℓ j me , 1, ,H ti j j , that are used to construct

~
U . From (29), we have



= +
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⎝⎜

⎡
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n m M H
t

n
m m M H

t

n

2

4 5
2

2 5 . 39

A B
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B m

1
1

1
1

A B

We summarize the results for algorithm 1 in the following proposition.

Proposition 2. Let    = å =      H H H H H m, ... , 2i
m

i m1 1 2 , with given partition

= + = å =
¢H A B A H, i

m
i1 and = å = ¢+B Hi m

m
i1 . Let t>0 and  e >1 0, and assume  e¢ em H t16 2 and

 e- ¢ ¢+ ( )e m m H t16 m 2 . Let În such that

 e    ( )n t A B C4 3 , 403

where =     { }C A Bmax , . For any Îk k,A B , define the quantities

e
=

¢ ¢ -  ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠M

em t H em16 4

3

5

3
A

k k
2

1 2 1A A

e
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⎛
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⎞
⎠⎟

⎛
⎝

⎞
⎠

( ) ( )
M

e m m t H e m m16 4

3

5

3
,B

m
k k

2
1 2 1B B

and let
~
U be defined by (31). Then the number N of exponentials for the approximation of -e Hti by

~
U with accuracy

e is atmost

 ¢ + - ¢- -
¢+   

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥( ) ( )N m n M H

t

n
m m n M H

t

n
4 5

2
2 5 . 41k

A
k

B m
1

1
1

1
A B

For x, y>0, it is easy to show ⌈ ⌉ { }x y x x ymax , 2 . Thuswe have the following corollary.

Corollary 1. Let =  n M H tA A 1 and = ¢+ n M H t2B B m 1 . The bound to thenumber of exponentials of proposition 2,
equation (41),may be expressed as

 ¢ + - ¢- -· { } ( ) · { } ( )N m n n m m n n4 5 max , 2 5 max , . 42k
A

k
B

1 1A B

Remark 2.Observe that if n n n,A B , thenmodulo constants (42) implies that the cost for simulating
= +H A B is upper bounded by the sumof the cost upper bounds for simulating A and B separately.
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Remark 3.The bound (42) isminimizedwith respect to kA and kB by appropriately selecting optimal values
* *k k,A B such that *  ( )k k1 A A

max and *  ( )k k1 B B
max , where

e e= ¢ = - ¢ ¢+   ⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥( ) ( ( ) )( ) ( )k e m H t k e m m H tlog 16 , log 16 .A B m

max 1

2 25 3 2
max 1

2 25 3 2

Remark 4.Consider (42). If   ( )n M H t1A 1 , then kA is optimally selected to be 1. Alternatively, if
*  ( )M k H t nA A 1 then kA is optimally selected to be ( )kA

max . Similar remarks apply for kB, where instead of
¢  m H, 2 , and MA weuse - ¢ ¢+ ( )m m H, m 2 , andMB.We give formal conditions for optimally selecting the

splitting formula orders for the general case in section 4.3.

It is relatively straightforward to extend algorithm1 to the casewhereH is partitioned intoμ�2manygroups
H=A1+...+Aμ. Theoverall approximation

~
U ofU=e−iHt follows from (22) and (23)with k=1 andbecomes

¼ D~
m≔ ( ( )) ( )U S A A A t, , , , 43n

2 1 2

where ¼ Dm ( )S A A A t, , ,2 1 2 is given in (24). The analysis is similar to the caseμ=2 considered above. The
main difference is that lemma 2 in the appendix no longer applies for bounding the first-step error (35), andwe
use [13, lemma 2] instead, which gives a similar a result. The rest of the analysis is the same as that in the proof of
proposition 2.We summarize our results in the following theorem.

Theorem1. Let    = å =      H H H H H m, ... , 2i
m

i m1 1 2 , with givenpartition m= å =m
=H A ,i i1

( )O 1 . Let = å ÎA Hj i I ij
, where = ∣ ∣m I I,j j j is a set of consecutive indices, Ç = ÆℓI Ij for ¹ ℓj , andÈ =m

= Ij j1

 m¼{ }m m1, , , 2. Suppose    m     A A A...1 2 . Let >t 0 and  e >1 0. Let În such that

 m m e    ( )n A t A t
16

9
. 441 2

For Îkj , define the quantity

m
e

=  
 

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( )

( )
n m H t

e m t H e8 8

5

5

3
,A j j

j j
k k

,1
,2

1 2

j

j j

where ( )H j,1 is theHamiltonian that hasmaximumnorm among the ÎH i I,i j and similarly ( )H j,2 is the

Hamiltonianwith the second largest norm6 in the same group ofHamiltonians, m= ¼j 1, , . Consider
~
U to be

defined by (43). The number N of exponentials involving the ¼H H, , m1 required for the approximation of -e Hti by
~
U

with accuracy e is atmost

 å
m

=

- { } ( )N m n n4 5 max , . 45
j

k
j A

1

1j
j

The proof follows from that of theorem 2whichwe state in the next section and is found in the appendix.

Remark 5.Theway theHamiltonians are groupedwill influence the upper bound (45). Ideally, the formation of
the groups shouldminimize this upper bound. Roughly speaking,Hamiltonians of relatively large norm should
be put in groups of relatively small cardinality.

Remark 6.The bound for the number of exponentials shown in the previous theoremholds under general
conditions and does not depend on how the partitioning of theHamiltonians into groups is performed. Finding
parameters thatminimize equation (45) is a separate task, which is to be carried out on a classical computer.

4.2. Algorithm2
Algorithm2 generalizes algorithm1by applying an arbitrary splitting formulas at itsfirst step insteadof applying
specifically the Strang splitting formula; seefigure 1. The details and analysis of algorithm2 are similar to, butmore
complicated than, those of algorithm1.We state themain results here, and provide the proofs in the appendix.

We again consider the simulation of a partitionedHamiltonianH=A+B, with
= + + = + +¢ ¢+A H H B H H... , ...m m m1 1 . Just like in algorithm 1, the second step of algorithm2uses

splitting formulas of orders +k2 1A and +k2 1B for the simulations ofA andB, respectively, and combines the
partial results using a splitting formula of order +k2 1.

Proposition 3. Let    = å =      H H H H H m, ... , 2i
m

i m1 1 2 , with given partition

= + = å =
¢H A B A H, i

m
i1 and = å = ¢+B Hi m

m
i1 . Let     ≔ { }C A Bmax , and     ≔ { }D A Bmin , .

6
Itmay happen that =   ( ) ( )H Hj j,2 ,1 .
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Assume   e e¢ - ¢ ¢+     ( )C t em H t e m m H t1, 16 , 16 m2 2 , and  e e D t16 . For Îk k k, ,A B , define
the quantities

•  e    ( )( )n C t e D t16 k e k1 2 8

5

5

3
,

• e= ¢ ¢
-

   ( ) ( )n m H t m H t e7A
e k k k

1
64

5 2
1 2 5

3

A A
,

• e= - ¢ - ¢¢+ ¢+
-

   ( ) ( )( ) ( )n m m H t m m H t e14 ,B m
e

m
k k k

1
64

5 2
1 2 5

3

B B

and let
~
U be defined by (23). Then the number N of exponentials for the approximation of -e Hti by

~
U with

accuracye is atmost

 h¢ + - ¢+ - + -{ } ( ) { } ≕ ( ) ( )N m n n m m n n k k k8 5 max , 4 5 max , , , . 46k k
A

k k
B A B

2 2A B

Remark 7. If =k 1, we get the cost bound of algorithm1 (up to small constant factors). Note that in some cases,
e.g. when e D t is large, even thoughwe could use =k 1, selecting a value >k 1may yield n that is
substantially smaller than that shown in (40) in proposition 2.

Remark 8. If any of the conditions   e e¢ - ¢ ¢+     ( )C t em H t e m m H t1, 16 , 16 m2 2 , or  e e D t16
are violated, thenwe end upwith an easier simulation problem as it can be seen in the proof of this proposition.
Roughly speaking, it would imply that e is relatively large. So, in away, these conditions specify the
interesting case.

It is again relatively straightforward to extend algorithm2 to the case whereH is partitioned intoμ�2many
groupsH=A1+...+Aμ. The overall approximation

~
U ofU=e−iHt then becomes

¼ D~
m≔ ( ( )) ( )U S A A A t, , , , 47k

n
2 1 2

where ¼ Dm ( )S A A A t, , ,k2 1 2 is constructed as in (23).We summarize the results for this case in the following
theoremwhose proof can be found in the appendix.

Theorem2. Let    = å =      H H H H H m, ... , 2i
m

i m1 1 2 , with given partition m= å =m
=H A ,i i1

( )O 1 . Let = å ÎA Hj i I ij
, where = ∣ ∣m I I,j j j is a set of consecutive indices, Ç = ÆℓI Ij for ¹ ℓj , and

 È m= ¼m
= { }I m m1, , , 2j j1 . Let >t 0 and  e >1 0. Suppose    m     A A A...1 2 , m A t 11 ,

 e A t2 , and m e ( )m H tj j,2 , where ( )H j,1 is theHamiltonian that hasmaximumnorm among the ÎH i I,i j

and similarly ( )H j,2 is theHamiltonianwith the second largest norm in the same group for m= ¼j 1, , . For
¼ Îmk k k, , ,1 , let În be such that

 m
m
e

 
  ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( )n k A t

e A t e8 4

5

5

3
. 48

k k

1
2

1 2

and define the quantities

m
e

m= = ¼
-

 
 

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( )( )

( )
n k k m H t

e m H t
e j,

32

5
7

5

3
, 1, , . 49A j j j

j j
k k k

,1
,2

1 2

j

j j

Consider
~
U to be defined by (47). The number N of exponentials for the approximation of -e Hti by

~
U with

accuracye is atmost

 å h ¼
m

m
=

+ - { ( ) ( )} ≕ ( ) ( )N m n k n k k k k k8 5 max , , , , , . 50
j

k k
j A j

1

2
1

j
j

Remarks 5 and 6 apply to this theorem aswell.

Remark 9.The condition    m     A A A...1 2 is used here for simplicity. For general groupings, the
theorem still holds with the quantities A1 and A2 replaced by the largest and second largest group norms.

4.3. Selecting the order of the splitting formulas
For any partitioning of theHamiltonians intoμ groupswewant to determine the order of the splitting formulas.
The parameters k1,K, kμ allow splitting formulas of different orders to be used for theHamiltonians in each
group. The parameter k determines the order of the splitting formula used in thefirst algorithm step. Ideally we
want tofind the optimal parameters * * *¼ mk k k, , ,1 thatminimize the simulation cost bound (50), which takes
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the value * * * *h h ¼ m≔ ( )k k k, , ,1 . This expression is complicated and to simplifymatters we provide sharp

upper bounds ¼ m
( ) ( ) ( )k k k, , ,max

1
max max to the optimal values.

Proposition 4.The simulation cost bound (50) of theorem 2 isminimized by integers * * *¼ mk k k, , ,1 satisfying

* *    m= ¼ ( )( ) ( )k k k k j1 , 1 1, , , 51j j
max max

where

m
e
 ⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

≔ ( )( )k
e A t

max round
1

2
log

8
, 1 52max

25 3
2

and

m
e

m= ¼
 ⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

≔ ( )( ) ( )
k

e m H t
jmax round

1

2
log

32

5
, 1 , 1, , . 53j

j jmax
25 3

,2

Proof.Wehave * * * ¼ mk k k1 , , ,1 .

Let the functions ( ) ≔ ( )g k n k5k and +( ) ≔ ( )h k n k k5 , 3j j
k k

A j
kj

j
. Note that k cancels out in the latter case so

hj(kj) is a univariate function. Considerminimizing g(·) and hj(·) independently. For g(k), setting its derivative
to zero gives

m
e

- =
 

k
e A t

2 ln
25

3
ln

8
0,2 2

which gives k(max) as in (52). Repeating this argument for hj(kj) gives ( )kj
max as in (53). Since g(·) and hj(·) are

log-convex functions [55], the values k(max) and ( )kj
max give the respectiveminima.

Observe thatwemay rewrite the right-hand side of (50) as

å åh ¼ = =m

m m

=

+ +

=

( ) { ( ) ( )} { ( ) ( )} ( )k k k m n k n k k m g k h k, , ,
8

25
max 5 , 5 ,

8

25
max 5 , 3 . 54

j
j

k k k k
A j

j
j

k k
j1

1 1

j j
j

j

Now assume k1,K, kμ are arbitrary but fixed. Then h h¼ m m( ) ( )( )k k k k k k, , , , ...,1
max

1 for k>k(max) since

the arguments of themaximum function cannot decrease. By a similar argument, for > ( )k kj j
max , we have

h h¼ m m( ) ( )( )k k k k k k k k, , , ,... , ..., ,...j j1 1
max . Therefore, theminimizers * * *¼ mk k k, , ,1 of (50) satisfy

*  ( )k k max and *  m= ¼( )k k j, 1, ,j j
max . ,

Hence, without loss of generality wemay restrict to parameters k�k(max) and  m= ¼( )k k j, 1, ,j j
max .

Remark 10. For each individual group, (53) shows that small cardinality and smallHamiltonian norms reduce
the order of the splitting formula that suffices for its simulation.

Remark 11.Observing the arguments of themaximum function in (50), if ( ) ( )n k n k k,A jj
for all k and some

j , then * =k 1j . On the other hand if <( ) ( )n k n k k,A jj
for  ( )k k max and some j , then * = ( )k kj j

max . Thus,
roughly speaking,Hamiltonians of small normmay be grouped and optimally simulatedwith a low-order
splitting formulas, whereasHamiltonians of large norm in general require higher-order formulas.

Remark 12.The quantities defined in (52) and (53) grow very slowlywith the problemparameters e m- t m, , , j
1

and theHamiltonian normsHence from a practical standpoint, even if the problemparameters take huge values
the values of (52) and (53)will bemoderate. Thus, is practice it is not difficult or costly to perform an exhaustive
search and obtain the * * *¼ mk k k, , ,1 .

4.4. Speedup
We illustrate our results by showing the speedup of our algorithms relative to those in [13] for a number of cases.
Generally, our approach is preferable when there is a disparity in theHamiltonian norms andmany of them are
very small.
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From [13, section 5], we have the number of exponentials is bounded as

e
=  

  ⎜ ⎟
⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟( ) ( )N k O m H t

mt H 25

3
, 55

k k

prev
2

1
2

1
2

where k is the order of the splitting formula. Selecting *=k k as in (17) this becomes

* = e 
 

( ) · ( )N O m H t e . 56prev
2

1
2 ln ln

emt H1
2

25
3

4 2

Note that the second factor e= de  
 

(( ) )e O mt H2 ln ln
2

emt H1
2

25
3

4 2
for any δ>0. The explicit expressions for (55)

and (56) are shown in (16) and (18), but herewe use asymptotic notation to focus on the problemparameters
and to ignore the constants.

For simplicity considerμ=2, i.e.,H=A+B, with = + + + ¢ <¢A H H H m m... ,m1 2 , andB equal to
the sumof the remainingHamiltonians, as in (19). The number of exponentials for algorithm 2 is shown in (46)
in proposition 3. Assume that    A B and in addition assume

- ¢ ¢¢+   ( ) ( )m m H m H . 57m 1 2

Note that the left-hand side of the inequality above is an upper bound to B , and the inequality relates that to the
number ofHamiltonians formingA times theoverall second largestHamiltoniannorm.This condition is easy to
check inprinciple, and it holds in caseswhere theoriginalHamiltonians have quite disproportionate norms

Clearly  ¢   A m H1 and  - ¢ ¢+   ( )B m m Hm 1 andwe select the parameter n of proposition 3 by

e
= ¢

- ¢ ¢+ 
  ⎜ ⎟

⎡
⎢
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎤
⎥
⎥⎥( ) ( ) ( )n k m H t

e m m H t e16 8

5

5

3
. 58m

k k

1
1

1 2

The quantities * * *k k k, ,A B and ( ) ( ) ( )k k k, ,A B
max max max are shown in proposition 4. Let * * * *h h= ( )k k k, ,A B denote

the optimal cost bound of algorithm 2. The cost bound of proposition 3 satisfies * h h ( )N k k k, ,A B .
For different values of the parameters we have the following speedups.

1. Comparisonwhen all splitting formulas have the same order, i.e., k=kA=kB, k=O(1):
The cost bound (46) has the same dependence on t and ε as that of (55), sowhenwe divide the two cost
bounds to obtain the speedup the parameters t and ε cancel out. Fromproposition 3, (57) and (58), we have
max{nA, n }=c1nA andmax{nB, n}=c2n, where c1, c2�1 are constants. Hence, (46) gives cost

 


h
e e

¢ + - ¢

¢ ¢ + - ¢ ¢ - ¢

- -

¢+       
( ) ( )

· ( ( ) ( ) (( ) ) )
N k k k m c n m m c n

C m H t m H t m m m H t m m H t

, , 8 5 4 5

,

k
A

k

k
m

k

2 2
1

2 2
2

2
1 2

1 2
1 1

1 2

whereC is a constant, and hence the speedup over [13] (with the same k) is

=
¢

+
¢ - ¢+

¢+ 
 

⎛
⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( )

( ) ( )N

N k
O

m

m
O

m

m

m m H

m H
, 59

k
m

k

prev

2 1 2
1

2

1 2

for all ε, t. Therefore, the algorithm in [13] is slower than the one in this paper by a factor proportional to a
polynomial inm′/m, the degree of which is in the range [1, 2.5]. This is particularly important
when ¢ m m.

2. Comparison to the cost of [13]with optimally chosen parameter:
We use the previous case to derive a rough estimate. Observe that, forfixed kwe have

*
e=  

( )
( )

N k

N
O m H t .kprev

prev
2

1 2

Thus, again considering k=kA=kB, k=O(1), we have

* *
 h

e e
=

¢ ¢
+

¢ - ¢ ¢+   ⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )
( )

( )

( ) ( )

N

N

k k k

N k

N k

N

O
m

m

m H t
O

m

m

m m H t

, ,

, 60
k

m
k

prev prev

prev

prev

2
2

1 2
1

1 2

which follows from (56) and (59). Therefore, forfixed H t,2 , and ε, the algorithm in [13]with optimally
chosen parameters remains slower than algorithm2with arbitrary = =k k kA B. The speedup depends on a
polynomial inm′/m, the degree of which is in the range [1, 2].
Clearly, optimally selecting k, kA, and kB as in section 4.3 can only improve the speedup over [13].
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3. Comparison among optimalmethods, i.e., using the optimal splitting formulas in the respective cases:
Assuming that all complexity parameters are fixed, with the exceptions ofm and ¢ = ( )m O m5 6 , we have

*
*
*

 h
¥

⟶ ( )N

N N
0, 61

mprev prev

where *h is given by (46) for optimally chosen k, kA, and kB. The proof is given in appendix A.5.
In this sense we achieve a strong speedup over [13].

4. Comparisonwhen a significant number ofHamiltonians have very small norm relative to H2 :
Recall that we are interested in simulation problemswhere a significant number of theHamiltoniansHj are
relatively small in norm,where existing simulationmethods do not take advantage of this structure.
We use two parameters 0�b�a<1 to describe the relationship of B and A . This approach has
applications to problems such as the simulation of the electronicHamiltonian, aswewill see in the following
section. Suppose

- ¢ = - ¢ Î¢+   ( ) (( ) ) [ ) ( )m m H H O m m bfor a given 0, 1 . 62m
b

1 2

For example, if = H 12 and - ¢ =( )m m 106, while theHamiltonians in the group composingB have
norms atmost 10−4, then  =-  ·B 10 10 106 4 2, i.e. b; 1/3.Note that for a given problem instancewe
can consider H2 to befixed and use (62) to partition theHamiltonians into the two groups.
Recall  ¢m m1 because ¢m is the number ofHamiltonians formingA. Further suppose

¢ = Î( ) [ ) ( )m O m afor some 0, 1 . 63a

For the case k=kA=kB=O(1) above (where the speedup is independent of ε and t), using these assumptions
in (59)we obtain

h
= +

- ¢
=

+

- + -
⎜ ⎟ ⎜ ⎟

⎛
⎝⎜
⎛
⎝
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⎝
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⎞
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⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠
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( ) ( )

k k k

N k
O

m

m
O

m

m

m m

m
O

m

, , 1
.

a k a b k

a b k
prev

2 1 2 1 2

1 1 2

Similarly, for the case of (60)with fixed H t,2 , and ε, using the new assumptionswe obtain

*
=

- -
⎜ ⎟⎛
⎝

⎞
⎠

N

N
O

m

1
.

a b k
prev

1 2

Therefore, selectingk such that the exponent of the denominator is positive yields a speedup the grows
withm. In the next sectionwewill use the parameters a and b to estimate the cost of our algorithms for
practical instances of the electronicHamiltonian.

5. Application to quantum chemistry

Solving difficult problems in quantum chemistry is viewed as a primary application of quantum computers.We
apply our algorithms to simulate the electronicHamiltonian, which describesmolecular systems. Quantum
algorithms forHamiltonian simulation also have applications in the calculation of electronic energies, reaction
rates, and other chemical properties [11, 17, 31, 48, 56].

Robust classical algorithms for this simulation exist (e.g. diagonalization), but in general they are intractable
as their cost grows exponentially with the number of particles. Thus, largemolecules are out of reach for classical
computers [17]. On the other hand, quantumalgorithms [17, 48] can efficiently simulate the second-quantized
formof the approximate Born–Oppenheimer electronicHamiltonian (4). ThisHamiltonian can be represented
in the form = å =H Hj

m
j1 that we consider in this paper. There exist quantumalgorithms simulating (4)with

cost that exhibits a polynomial dependence onm. Unfortunately, the combination of the size ofm and the degree
of the polynomial wouldmake the simulation cost prohibitive in cases of interest [17, 23, 41, 45, 46]. Hence,
reducing the cost ofHamiltonian simulationwill have a significant impact in chemistry.

5.1. ElectronicHamiltonian
Recall the Born–Oppenheimer approximate electronicHamiltonian in second-quantized form (4), i.e.,

 

å å= +
= =

† † †H h a a h a a a a:
1

2
.

p q
pq p q

p q r s
pqrs p q r s

, 1 , , , 1

The quantities hpq and hpqrs are obtained by considering  single-particle basis functions (spin–orbitals) taken
froma given family of such functions. Particularly, the hpq and hpqrs are one-electron and two-electron integrals,
respectively, as defined in [17, section 3] through a set of  basis functions. The †ap and ap are the creation and
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annihilation operators for the pth orbital, which encode the fermionic exchange antisymmetry of the problem.
The generalHamiltonian form is the same for allmolecules. Therefore, theHamiltonian of a particularmolecule
is defined by  and the hpq and hpqrs.

Using the terminology of the earlier sections of the paper, theHamiltonian above can bewritten in the form

å=
=

( )H H , 64
j

m

j
1

where = Q( )m 4 , andHj areHamiltonians obtained from the terms of (4) by combining adjoint pairs; see e.g.
[17, 49]. Thus,modulo constant factors, the norms Hj are given by the ∣ ∣hpq and ∣ ∣hpqrs . These quantities
depend onmolecular geometry and the chosen set of basis functions [42, 43]. For basis functions that are
spatially localized, which are called local basis sets,many of the ∣ ∣hpq and ∣ ∣hpqrs are small or very small relative to
their largestmagnitude [43, 57, 58].We use this disparity to partition theHamiltonians into groups for our
algorithms.

For example, [49] considers the quantum simulation of the lithiumhydride (LiH)molecule with different
choices of basis sets. The authors of [49] consider Slater-type (STO-3G) [59] and triple-zeta (TZVP) [60] basis
sets and in both cases theyfind that a substantial fraction of theHj have quite small norm. In table 2, we illustrate
howone can partition theHamiltonian using the hpq, hpqrs values shown in [49] to obtainH=A+B, where the
HamiltonianB is the sumof the terms forwhich the corresponding ∣ ∣hpq and ∣ ∣hpqrs are less than or equal to
different ‘cutoffs’ andA is the sumof the remaining termsClearly, different partitions lead to different bounds
for the normof each group, whichwill be reflected in the cost bounds of the algorithms as shown in theorems 1
and 2. Extending this idea toμ>2 groups is straightforward.

We digress for amoment to remark that in practical applications of quantum chemistry, the computational
cost is often reduced by discarding terms ofH that have ‘negligible’norm relative to some cutoff, say 10−10

[43, 49, 57], but this cannot be done in an ad hocway. Recall that proposition 1 shows that wemay possibly,
depending on the particular problem instance, discard certain terms fromH, subject to the relationship between
the cutoff, et , , and the number of terms - ¢( )m m below the cutoff. On the other hand, when the product of the
cutoff with - ¢( )m m exceeds ε/t, we cannot arbitrarily discard - ¢( )m m terms, even though individually they
may be tiny, because this could introduce truncation error that would exceed the desired simulation accuracy.
This is alsomade particularly clear in the last three rows of table 2, where excluding the terms below the cutoff
may introduce error exceeding any reasonable accuracy as evidenced by the respective estimates of B .

5.2. Simulation cost
In chemistry problems the desired simulation accuracy is not arbitrarily small [28], while  can be quite large so
that (64) adequately represents the systemof interest [46]. Therefore, the important parameters affecting the
simulation cost are the number of single-particle basis functions  , and themagnitudes of the hpq and hpqrs.

In the second quantization, i.e., the occupation number representation, states are given by linear
combinations of  -bit strings, where a 1/0 indicates which orbitals are occupied/unoccupied by electrons,
respectively [42, 43]. ThusH acts on  qubits. EachHamiltonianHi in (64) can be represented by tensor

Table 2. For simulating LiHwith bond distance 1.63 Å, in [49]
they approximate the Born–Oppenheimer electronicHamiltonian
in twoways. Thefirst approximation uses aminimal basis set
(STO-3G) and hasm=231. The second approximation uses a
more accurate basis set (TZVP) and hasm=22155. In each casem
is the number of nonzero hpq and hpqrs. The quantity ¢m is the
number of ∣ ∣hpq and ∣ ∣hpqrs that are larger than the different cutoff
values. The quantities of the leftmost four columns in thefirst two
rows are are taken from [49, section 3.2]. The quantities of the
leftmost four columns in the remaining rows are estimated from
[49,figure 10].We considerH=A+B, whereA is the sumof the
¢m terms corresponding to ∣ ∣ ∣ ∣h h,pq pqrs larger than the cutoff, andB

is the sumof the remaining - ¢m m terms The norms ofA andB are
estimated using the triangle inequality, i.e.,  ¢   A m H1 and

 - ¢ ¢+   ( )B m m Hm 1 , where   ¢     H H H... ...m m1 ,
and for simplicity we assume   H 11 . Thus, we estimate

¢  A m and - ¢ ´   ( )B m m cutoff, rounded to the nearest
power of 10 for simplicity.

Basis set cutoff m ¢m  A  B

STO-3G 10−10 231 99 102 10−8

TZVP 10−10 22155 10315 104 10−6

TZVP 10−4 22155 9000 104 1

TZVP 10−3 22155 6000 104 10

TZVP 10−2 22155 2000 103 102
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products of Paulimatrices through the Jordan–Wigner transformation, and can be simulated efficiently using
( )O standard quantumgates [17]. Alternatives to the Jordan–Wigner transformation have been proposed,

such as the Bravyi–Kitaev transformation [50, 61]which improves the gate count for simulating the individual
Hj to ( )O log . Hence, our cost bounds for the number of queries (exponentials) immediately translate to
bounds for the total gate count throughmultiplication. Thus, using [50, 61], modulo polylogarithmic factors,
the total gate count is proportional to the number of queries. This is what wewill consider for our algorithms.

Consider now the simulation ofH using splitting formulas. For  spin–orbitals, the number of terms in
(64) is = Q( )m 4 . Naively applying an order +k2 1 splitting formula (15) yields a number of queries (i.e., a
number of exponentials)

 e+    ( ( ) ( ) )O H t H t 25 3 .k k k8 2
1 2

1 2

Thus, for arbitrary k the cost growswith  at least as  8. In particular, if we use the Strang splitting formula
(k=1), the number of queries is proportional to  10. Hence, a straightforward application of splitting
formulas yields a number of queries in the range  -8 10, which clearly becomes impractical even for
moderate  (e.g.,  = 100).

Improving this cost bound is critical for quantum computers to have an impact in quantum chemistry
applications. A sequence of papers [27–29, 45–47] describe the recent progress. They showboth analytic and
empirical results. Some of themperform gate-level optimizations across queries, and are thereby specific to the
particular problem instance. In [45, table 1], the number of queries using the Strang splitting formula is shown to
be proportional to  10, which corresponds to the one that follows from [13] as shown above. It is also shown in
[45, appendix B] that the number of queries can be reduced to become  9, and it is conjectured that the proof
leading to this reduction in the case k=1 could be extended to high-order splitting formulas (k>1). The paper
also considers the implementation of the queries using the Jordan–Wigner transformation. Thus, the total gate
count becomes proportional to  10, but allowing parallel gate execution the circuit depth becomes
proportional to  9.Moreover, the authors of the paper carried out numerical tests ofmolecules from a random
ensemble suggesting a number of queries proportional to  8 as shown in [45, table 1]. Gate-level optimizations
on the entire circuit are considered in [47]. In particular, using the Jordan–Wigner transformation for
implementing the queries, the authors of that paper conclude that their optimizationsmake the total gate count
proportional to the total number of queries. Therefore, for the Strang formula as presented in [45], the total gate
count is proportional to  9, and allowing parallel execution in conjunctionwith gate-level optimization leads
to a circuit with depth proportional to  7. In [28, 46], it was argued using empirical evidence that similar
improvements on the number of queries are possible for certain restricted but commonly used basis function
sets, and thismay lead to a number of queries proportional to  -5.5 7, while [27] reports even better
empirical query estimates in the range  -5.5 6.5. Finally, a recent paper [29] that uses the simulationmethod
of [25]with different queries than thematrix exponentials used in splitting formulas, obtains a total gate count
proportional to  8, modulo polylogarithmic factors. Furthermore, in a special case they are able to obtain a
total gate count proportional to  5 (up to polylogarithmic factors), under strong assumptions on the basis
functions and the computation of the hpq, hpqrs and the resulting accuracy and cost. However, we point out that
other authors consider the computation of these quantities to be ‘complicated business’ in general [43,
section 9.9.5].

Further note that the possibility of using problem specific information in quantum chemistry (e.g.,
simulating differentHamiltonians for different amounts of time, or simulating them in a certain order) to
improve the simulation cost was suggested in [27, 28, 45, 47, 49]without presenting an algorithmor a rigorous
analysis exhibiting error and cost bounds. Our goal is obtain rigorous simulation cost improvements under
fairly general conditions.

5.3.Divide and conquer simulation
Consider a set of local basis functions. In general, the number of non-negligible ∣ ∣hpq and ∣ ∣hpqrs is significantly
less than  4. In [43, section 9.12.2], it is argued that for sufficiently largemolecules this number is of order  2.
In [46], the authors claim that this number can scale even as  using local basis functions; however, for practical
problems scaling closer to  2 is expected. Also, [28] has found this number to be ( )O modulo logarithmic
factors. Using these estimates, we assume  å ==    ( )H H O mi

m
j

a
1 .We also assume = å =

¢A Hj
m

j1 with

¢ = ( )m O ma , and = å = ¢+B Hj m
m

j1 with  - ¢ =¢+   ( ) ( )B m m H O mm
b

1 , with 0�b�a. Thus, [43]
suggests that a=1/2 and [28, 46] suggest that a=1/4.Observe that our assumptions are consistent with the
situation depicted in table 2.

Consider algorithm 2withH=A+B. Assume t and ε are arbitrary butfixed, and let us study the
simulation cost with respect to  . Even if we do not select the optimal values for k, kA, and kB, andwe simply
assume they areO(1), we obtain a simulation cost improvement. The quantities of proposition 3 become
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= =   ( ) ( )C O m D O m,a b , and hence = =+ +( ) ( )n O m n O m,a b k
A

a a k2 2 A , and = +( )n O mB
b b k2 B . Using

these quantities and (46) the number of queries for simulation is bounded fromabove by

+ + +{ } { }c m m m c m m mmax , max , ,a b k a k a b k b b k
1

2 2 2
2

2 2A B

where c1, c2>0 are constants and et , arefixed.
Since 0�b�a�1/2 the previous expression is bounded by a quantity proportional to

+ +{ }m m mmax , .a b k b b k2 2 B

Taking k�kB yields that the simulation cost is proportional to

=+ + + +( ) ( )m O . 65a b k a b k1 2 4 4 2

Recall that by using the Bravyi–Kitaev transformation [50] for the terms of (64), the number of queries of our
algorithms,modulo polylogarithmic factors, is proportional to the total gate count.We compare our results to
those from the literature in table 3 (wehave summarized this table in table 1 in introduction).

Remark 13.Using the estimates =a 1 2 and =a 1 4 for local basis functions from [28, 43, 46] table 3 shows
that the number of queries of algorithm 2 scales as  -5 7,  b a0 . This is consistent with the empirical
results in [27, 28].

Remark 14. If a b, 0, the cost of algorithm 2 tends to ( )O 4 , which is a lower bound to the simulation cost
since the input size is Q( )4 . In contrast, a naive application of an order +k2 1 splitting formulawithout
partitioning theHamiltonianwould still have cost proportional to  + k8 2 .

Our algorithms take advantage of problem structure in terms of theHamiltonian norms, without relying on
other domain-specific information or implementation-level assumptions. As part of future work, it would be
interesting to study how gate-level optimizations and other information specific to chemistry could further
improve the performance of our algorithms. Furthermore, partitioning theHamiltonian intoμ>2 groupsmay
lead to further cost improvements in applications such as those in chemistry.

We conclude by pointing out that the advantages of our approach extend to problems beyond chemistry.
Our algorithms take advantage of the problem structure without relying on heavy assumptions, and are as
simple to implement as standard splitting formulas, but can lead to significantly lower cost. Just like splitting
formulas, our algorithms succeed deterministically and therefore they can be used as subroutines that can be
called numerous times in other quantum algorithmswithout this affecting the overall success probability. The

Table 3.Comparison of empirical and analytic cost boundswith
respect to the number  of single-particle basis functions for the
simulation of the electronicHamiltonian. The top half of the table are
estimates taken from the literature, ignoring any polylogarithmic
factors. The bottomhalf of the table is the estimated scaling for
algorithm2, where the parameters a and b have been estimated; see the
text for details.We give a range for the cost dependence in cases where
it varies with some of the algorithmparameters, orwhen the cost is
obtained empirically. All cost estimates refer to the number of queries,
except in the case of [29]which does not use splitting formula and
presents the total gate count. For all estimates concerning queries, the
transition fromqueries to gate counts involves amultiplication by a

( )O log factor in themost favorable case.

Method
Cost dependence on



Suzuki–Trotter splitting formulas [13]  -8 10

Improved Strang splitting for the electro-

nicHamiltonian [45]
 9

Empirical scaling of random ‘real’mole-

cules [45]
 8

Truncated Taylor series [29] (# gates)  8

Improved empirical scaling [27, 28, 46]  -5.5 7

On-the-fly algorithm [29] (# gates)  5

Algorithm2 : (a, b)=(3/4, 0)  7

Algorithm2 : (a, b)=(1/2, 1/2)  -6 7

Algorithm2 : (a, b)=(1/2, 1/4)  -6 6.5

Algorithm2 : =( ) ( )a b, 1 2, 0  6

Algorithm2 : (a, b)=(1/4, 1/4)  -5 5.5

Algorithm2 : =( ) ( )a b, 1 4, 0  5
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reduced cost of our algorithmsmaymake them suitable for applications in near-term quantum computing
devices whichwill have limited resources available.

We remark that it is possible to extend our algorithms to the case of time-dependentHamiltonians
= = å =( ) ( )H H t H tj

m
j1 , as was done for splitting formulas in [12, 16, 18].

Appendix

In this appendixwe give several formal results necessary for the analysis of our algorithms.We give the full
details of algorithm2, and give some slightly improved results for the usual application of splitting formulas.

A.1.Hamiltonians that do not affect the accuracy can be ignored

Proof of proposition 1.Using the variation-of-constants formula [62] for any vector vwehave

ò= -- - - - - ( )( )v v B v s te e i e e d 0 ,Ht At
t

As H t si i

0

i i

which implies

  e-- -   B te e 2.Ht Ati i

Thus,

  e e e- - + - + =~ ~- - - -     U Ue e e e 2 2 .Ht Ht At Ati i i i

,

A.2. Recursive Lie–Trotter formula
We show a generalization of the Lie–Trotter formula. For simplicity and to avoid technical details we assume
thatH,A, andB are complexmatrices.

Lemma1 (Recursive Lie–Trotter formula). Let ¼H H, , m1 beHamiltonians with = å =H Hi
m

i1 . Consider

= å =
¢A Hi

m
i1 and = å = ¢+B Hi m

m
i1 . Let

a b a a a b b b- - - -¢ ¢+( ) ≔ (( ) ( ) )f n, , e ... e e ... eH t n H t n H t n H t n ni i i im m m1 1

for a b În, , . Then for fixed a b, , we have

a b =
¥

-( )f nlim , , e .
n

Hti

In particular, forα=β=1 the usual Lie–Trotter formula (10) is reproduced.
Moreover, wemay also take limits with respect toα andβ, and in any order, i.e.,

a b =
a b¥

-( )f nlim , , e .
n

Ht

, ,

i

Proof. Fixα,β. Thenwemay expand f as

a b = a a a a

a
b b b b

b

- - - -

- - - -

¢ ¢

¢+ ¢+

  

  

( ) ( ( ) ( )

( ) ( ) )

f n, , e ... e ... e ... e

e ... e ... e ... e ,

H t n H t n H t n H t n

H t n H t n H t n H t n n

i i i i

i i i i

m m

m m m m

1 1

1 1

towhichwemay apply the Lie–Trotter formulawith respect to n to yield

a b a a a a

b b b b

= - - - + + - -

+ - - - + + - -

= =

a

b
a a a a b b b b

¥
¢ ¢

¢+ ¢+

- - - - - - -¢ ¢+

  

  

( ) ( ( ) ( )

( ) ( ) )

( ) ( ) ( ) ( )

f n H t H t H t H t

H t H t H t H t

lim , , exp i ... i ... i ... i

i ... i ... i ... i

e e .

n
m m

m m m m

H t H t H t H t Ht

1 1

1 1

i ... i i ... i im m m1 1

This expression holds for arbitrary butfixedα andβ. Now supposewe take a  ¥while keeping n andβfixed.
Thenwe have
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a b =
a

b b b

¥

- - -¢+( ) ( ( ) )f nlim , , e e ... e .At n H t n H t n ni i im m1

Taking now  ¥n yields

a b =
a¥ ¥

-( )f nlim lim , , e .
n

Hti

All possible orderings of the limits with a b  ¥n, , follow similarly. ,

A.3. Error of the Strang splitting formula
Suzuki [39] provides error bounds for the Trotter formula, the Strang formula, and other high-order splitting
formulas.Wewill build on the analysis of [45] to derive a useful bound for the error of the Strang splitting
formula.We note that the original analysis of [45] contains a small error, which has been corrected in [34,
appendix A].We also use results from [39].

Throughout the paper wemake use of the inequality (e.g., [39, lemma 1])

- - -       ( ( )) ( )a b n a b a bmax , , 66n n n 1

for a, b elements of a Banach operator algebra and În . Also recall the identity for the commutator operator
    [ ]X Y X Y, 2 , where -[ ] ≔X Y XY YX, .

Lemma2 (Strang splitting formula error). Let Î >n t, 0, andD =t t n: . Let A B, beHermitianmatrices
and = +H A B. Then

 - D + D D-       ( ( )) [[ ] ]S A B t A B A B t t A B C t te , ,
1

12
, ,

2

3
,Ht ni

2
2 2

where     ≔ { }C A Bmax , .

Proof. Let  - D + D( ) ≔ ( )H x x A t B t x1 , 0 1. From from [45, appendix B]we have

D + D     [[ ( )] ( )] ( [[ ] ] [[ ] ] )A t H x H x A B A A B B t, , , , , , .3

Extending the analysis of [45, appendix B], we get







ò ò

ò ò

-
-

D

=
-

D

+ D

+ D

- + D - D - D - D 

 

   

      

[[ ( )] ( )]

[[ ( )] ( )]

( [[ ] ] [[ ] ] )

( )

( ) s s
A t H x H x s x

s s
s A t H x H x x

A B A A B B t

A B A B t

e e e e
2

, , d d

2
d , , d

1

12
, , , ,

1

12
4 4 .

A B t A t B t A ti i 2 i i 2

0

1

0

1 2

0

1 2

0

1

3

2 2 3

For =     { }C A Bmax this yields

- D- + D - D - D - D     ( ) A B C te e e e
2

3
.A B t A t B t A ti i 2 i i 2 3

Finally,

- D D -- + D D D - + D - D - D - D   ( ) ( ) ( )( ) ( )S A B t t te , , e e e e ,A B t t t t t A B t A t B t A ti
2

i i 2 i i 2

which follows from (66)with unitary a and b. ,

A.4. Algorithm2details
Wegive the details of algorithm2, which generalizes algorithm1 byfirst applying a splitting formula of order

+k2 1; see figure 1.
We apply the results of [13], which achieves improved bounds to the simulation error and cost by rescaling

theHamiltonians to have norm atmost 1.Note that such rescalings are equivalent to rescalings of the simulation
time. Indeed, forHamiltoniansA,B,H=A+B, andℓ>0we have

= = =- -ℓ ℓ( ) ( )ℓ ℓ( ) ( )U H t U H t, e e ,H t H ti i and =ℓ ℓ ℓ( ) ( )S A B t S A B t, , , ,k k2 2 , where the
definition of S2k is given in (12).

Proof of proposition 3.Recall the preliminary analysis given in section 3.4. Consider theHamiltonianH as in
(2) and (3), partitioned into two groups = + = + + + + +¢ ¢+( ) ( )H A B H H H H... ...m m m1 1 .We have
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= = = =- - + - + - + -        ( ) ( )( ) ( ) ( )( )U e e e e ,Ht A B t M M C t
A B M C M C ti i i iA

C
B
C

1

for     ≔ { }C A Bmax , , and the quantityM>1 is sufficiently large andwill be defined shortly. Also define
     ≔ { }D A Bmin , . Thus the (algorithmfirst-step) time slice size is - ( )M C 1, and the number of (first-
step) intervals is  ⌈ ⌉M C t . Let

d -     ≔ ⌊ ⌋ ≔ ⌊ ⌋n M C t M C t M C t,0

denote the integer and fractional parts of d= + M C t n0 , respectively.

Recall it is equivalent to simulate  H C for time  t C . Let

d
       


⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟≔ ( )U S

A

C

B

C M
S

A

C

B

C M
, ,

1
, , . 67k

n

k2 2

0

Unwinding the recurrence (12) defining S2k for twoHamiltoniansX andY and t Î yields [12, 13]

t t=
=

( ) ( )
ℓ

ℓS X Y S X Y z, , , , ,k

K

2
1

2

whereK=5k−1 and each zℓ is defined according to the recursive scheme of (12),ℓ=1,K,K. In particular,
each zℓ is given as product of k−1 factors as =  Î Îℓz p qr I r r I rp q

, where the products are over the index sets

Ip, Iqdefined by traversing the path of the recursion tree corresponding toℓ, andå == ∣ ∣ℓ ℓz 1;K
1 see [13, section

3] for details. Recall that in section 3.2we have defined the quantities = - - -( ) )( )p 4 4k
k1 2 1 1 and

= -q p1 4k k, for Îk .

Let  t~ ( )U and  t~ ( )U be approximations to t-  ( )e A Ci and t-  ( )e B Ci , respectively, where =  A C and
 =  B C .We approximate t   ( )S A C B C, ,2 by

  t t t t~ ~ ~    ( ) ≔ ( ) ( ) ( )S A C B C U U U, , 2 2 ,2

and this yields

   t t t t t= ~ ~ ~

= =

        ( ) ≔ ( ) ( ) ( ) ( )
ℓ

ℓ
ℓ

ℓ ℓ ℓS A C B C S A C B C z U z U z U z, , , , 2 2 .k

K K

2
1

2
1

Hence, applying the above to (67)we get

  

 



d
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=
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~ ~ ~

= =
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⎛
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⎞
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≔ ( ( )) ( )

( ) ( )

( ) ( ) ( ) ( )
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ℓ
ℓ ℓ ℓ

⌈ ⌉
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S A C B C z M S A C B C z M

U z M U z M U z M

, , 1 , ,

, , , ,

2 2 , 68

k
n

k

K n K

K M C t

2 2

1
2

1
2

1

0

0

where in the last equationwe have re-indexed the product so that =¢ ¢ +ℓ ℓ(( ) )z z Kmod 1 for  ¢ℓ n K1 0 , and
d=¢ ¢ +ℓ ℓ(( ) )z z Kmod 1 for < ¢ +ℓ ( )n K n K10 0 . The overall termordering and time interval sizes are easily

computable from (12) to (68). Thus
~
U is an ordered product of  ( ⌈ ⌉)K M C t3 -many applications of 

~
U and 

~
U

(each applied for differing simulation times).
We now turn to the algorithm second step splitting formulas, i.e., the ones approximating t-  ( )e A Ci and

t-  ( )e B Ci for t Î .We apply Suzuki’s high-order splitting formulas, with different orders in principle.
Oncemore simulating =  A C for time τ is equivalent to simulatingA for time t  C , and this is

further equivalent to simulating  A H1 for time t   H C1 . Thuswe define


 



= ¢

= ¢ <
¢+ ¢+

 
    

 
    

⎧
⎨⎪

⎩⎪
≔

( )

( )

j m

m j m

1

.
j

H C

H C

H

H

H C

H C

H

H

j j

j

m

j

m

1 1

1 1

Thuswe obtain

    d¼ ¼~
¢ ¢

   ( ) ≔ ( ) ( ) ( )ℓ
⌊(∣ ∣ )( )⌋ℓU z M S M S M2 , , , 1 , , , , 69k m A

z M M H C
k m A A2 1

2
2 1A

A
A

1

    d¼ ¼~
¢+ ¢+¢+   ( ) ≔ ( ) ( ) ( )ℓ

⌊ ∣ ∣ ⌋ℓU z M S M S M, , , 1 , , , , 70k m m B
M H z M C

k m m B B2 1 2 1B
B m

B
1

where d -       ≔ ∣ ∣ ( ) ⌊ ∣ ∣ ( )⌋ℓ ℓM H z M C M H z M C2 2A A A1 1 and d -¢+   ≔ ∣ ∣ ( )ℓM H z M CB B m 1

¢+   ⌊ ∣ ∣ ( )⌋ℓM H z M CB m 1 , andMA,MB>1will be defined shortly. The quantities    ⌈ ∣ ∣ ( )⌉ℓM H z M C2A 1

and ¢+   ⌈ ∣ ∣ ( )⌉ℓM H z M CB m 1 give the number of subintervals used to further subdivide intervals of length

ℓz M2 A and zℓ/MB, respectively. The readermaywish to recall the text after (32) and (33) that deals with the
calculation of the number of subintervals and their lengths.
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Error and cost. Using (67) and (68), we bound the overall error by

- - + -~ ~      U U U U U U .

Thefirst term in the right-hand side corresponds to the error of a splitting formula at the first step of the
algorithm,wherewe pretend that exponentials t Ît t- -e , e ,A Bi i are given to us exactly, and the second term
corresponds to the error in the second step of the algorithm, i.e., the error introduced by splitting formulas
approximating e−iAτ and e−iBτ.

As explained in section 3.4, to guarantee  e- U U 2we set the quantityM as in (27), which gives

e
=
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⎛
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To apply [13], theorem1 forH=A+B and accuracy e 2, the condition of that theorembecomes

 e  ( )et D16 , 71

which impliesM�1.Hence, the number of S k2 comprising U in (67) is atmost

-  · ⌈ ⌉M C t3 5 ,k 1

where  ⌈ ⌉M C t gives the number of time intervals at the first step. The interesting case is  M C t 1, for which
it suffices to assume  C t 1 (otherwise, as explained in the analysis of algorithm 1,wewould be dealingwith
an easy problem). Then the above quantitymay be further bounded by -  · M C t3 5 2k 1 . LetNA andNB be upper

bounds to the number of exponentials comprising 
~ ( )ℓU z M2 and 

~ ( )ℓU z M , respectively, for anyℓ. Then the
resulting total number of exponentials in algorithm 2 (in

~
U ) is

 + -  ( ) ( )N N N M C t2 5 2 . 72A B
k 1

In order to obtain estimates toNA andNBwe turn to the second-step error, wherewe require
 e- ~ U U 2.We have
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The 
~
U and 

~
U are given by splitting formulas over time intervals of size dℓ ℓ ℓz M z M z M2 , , 2 and

zℓδ/M, which varywith the zℓ. Since δ<1we bound the second term in (73) to get
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Thus, sufficient conditions for  e- ~ U U 2 are
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Wenext explain how to select the subintervals for applying 
~
U and 

~
U , keeping inmind that we eventually

select the same values ofMA andMB in all resulting time intervals due the upper bounds (76) and (78) below.
Note that selectingMA orMB to be larger than necessary can only reduce the simulation error. Thus, for
convenience, we selectMA andMB uniformly and large enough so that the resultingworst-case errors are
sufficiently small.

In particular, consider 
~ ( )ℓU z M2 which approximately simulates  A C for time ℓz

M2
. This amount of

timewe further subdivide in ( )ℓM z M2A slices. From [13], the error will be atmost e
 M C tK8

if using (14)we

set
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Importantly, observe that the factors ofM and C have canceled. Using the fact that [12, appendix A]
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for allℓ. Hence, wewill split every time interval of size = ¼ℓℓz M K2 , 1, , intoMA subintervals.
To bound the cost of each 

~ ( )ℓU z M2 , we apply [13, theorem2]. The theorem assumes

¢ e 
   ( )∣ ∣ℓem4 z
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2 , or equivalently  e¢  ∣ ∣ℓem H tK z16 ,2 where again theM and C factors have

canceled. Since in the statement of the propositionwe have assumed that

 e¢  ( )em H t16 , 772

we an apply [13, theorem2]. Hence, the number of exponentials for each  = ¼~ ℓ( )ℓU z M K2 , 1, , , is atmost
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Note that the argument of this ceiling functionmay be greater than or less than one, depending on the problem
instance and algorithmparameters. In the latter case, the time intervals of length ℓz M2 do not require any
subdivision at all.

We now consider 
~ ( )ℓU z M which approximately simulates  B C for time zℓ/M, and proceed similarly.

to give error atmost e
 M C tK4

we selectMB from (14) to give
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Observe that the factors ofM and C have again canceled, andMB is of the same form asMA.

To apply [13, theorem2] to bound the cost of any 
~ ( )ℓU z M , we require

- ¢ e¢+ 
   ( )( ) ∣ ∣ℓe m m4 ,z

M

H

C M C tK4
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becausewe have assumed that
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The number of exponentials for each 
~ ( )ℓU z M is atmost
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Thus, from (72)wehave that the total cost (total number of exponentials) is atmost
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which is equal to the lower bound for n as it appears in the statement of the proposition, and

= = ¢+    n M H t
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3
,
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,A A k B B m k1 1

the cost bound becomes (see (41))
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Again applying the inequality ⌈ ⌉ { }x y x x ymax , 2 for x, y>0, we have
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Finally, we use the inequality
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Applying these estimates, the cost bound becomes
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Clearly this inequality is valid by replacing n by any n such that  n n . ,

Proof of theorem2As the analysis is similar to that of proposition 3, we give only the important parts. Recall the
preliminary analysis given in section 3.4.

Consider aHamiltonian as in (2) and (3), partitioned intoμ groupsH=A1+...+Aμ as in section 3.4,
labeled such that    m     A A A...1 2 .We approximate = -U e Ht with
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where in the statement of the theoremwehave assumed m e t A2 . Note that we do not require În ;
however, as evident from (72) and (74), this assumption does not affect our analysis.
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Hence, the number of exponentials in 
~ ( )ℓU z M2
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Recalling (29), from (72)we have that the total cost (overall number of exponentials) is atmost
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We again apply (80) to give the simpler quantities
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which gives the cost bound (50), i.e.,
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We remark that setting k=1 above reproduces the results of theorem 1up to small constants.

A.5. Proof of (61)

Proof.Consider all problemparameters to befixed except ¢m m, . Observe that (46) contains twomaximum
functions, and hencewe have four cases to consider with respect to the relativemagnitudes of n(k), nA(k, kA), and
nB(k, kB). Recall n(k) is given in (58). Herewe estimate themaximum function by the sumof its arguments to get
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wherewe have used asymptotic notation in the equality above and in the rest of this section to focus on how the
problemparameters affect the number of queries. The quantities under the square roots are derived as in [13].
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Observe that for a<b, the function -e 0a x b x as  ¥x . Thus, assuming ¢ = ( )m O m5 6 , we have
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