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Abstract

We show a divide and conquer approach for simulating quantum mechanical systems on quantum
computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of
Hamiltonians we split them into groups, simulate each group separately, and combine the partial results.
Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds
to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum
chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

1. Introduction

Classical simulation of quantum mechanical systems is a very difficult problem. The computational cost of the best
classical deterministic algorithm known grows exponentially with the system size. In some cases classical randomized
algorithms, such as quantum Monte Carlo, have been used to overcome the difficulties, but these algorithms also have
limitations. On the other hand, as Feynman proposed [1], quantum computers may be able to carry out the simulation
more efficiently than classical computers. This led to alarge body of research dealing with quantum algorithms for
Hamiltonian simulation [2-29], with numerous applications to problems in physics and chemistry [30-35].

In the Hamiltonian simulation problem one is given a Hamiltonian H acting on g qubits, atime ¢ € R, and an
accuracy demand ¢, and the goal is to derive an algorithm constructing an operator U approximating the unitary
operator e~ /"with error | 7 — e || < ¢ measured in the spectral norm. When the Hamiltonian is given
explicitly, the size of the quantum circuit realizing the algorithm is its cost. In particular, the cost depends on the
complexity parameters g, tand e . On the other hand, when the Hamiltonian is given by an oracle, the number of
queries (oracle calls) used by the algorithm plays a major role in its cost, in addition to the number of qubits and the
other necessary quantum operations. Different types of queries have been considered in the literature. It is interesting
to note that there are cases where the query complexity is low, but when considering the query implementation and
the resulting total gate count the picture may be quite different. We give such an example in section 2.

There are papers that study only the query complexity. For example, [13] uses a splitting formula of order
2k + 1[36,37]tosimulate H = 3°% | H, [|[Hi|| > ||| > ... > [|H||. Itis assumed that the Hamiltonian Hiis
given by an oracle (a ‘black box’), and that H can be decomposed efficiently by a quantum algorithm using oracle
calls into a sum of Hamiltonians H;,j = 1, ..., m, that individually can be simulated efficiently. They approximate
e H'with error ¢ by a sequence of N unitary operators of the form e %', #, € {H,, ..., H,,}, £ = 1, ..., N.
This kind of query has been considered in numerous other papers, see e.g., [2, 8, 10, 12, 19]. The cost of the
simulation is the total number of oracle calls, which is proportional to the number of exponentials N. For each
Hamiltonian H;appearing in the sequence, the algorithm must make oracle calls to simulate it. In principle, since
the H; are obtained by decomposing H by the algorithm, an oracle call to any H;is simulated by making oracle calls
to H; see [10, section 5] for details.

Then [13] shows the number of exponentials is bounded from above by

4 Hllt 1/(2k) k—1
N < m2H1||t(M] %(?) , 1)
€

where ||-||is the spectral norm.
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In this paper we give a new approach for simulating Hamiltonians of the form

H:ZH]-. )

j=1

Our approach is especially useful when the number 1 of Hamiltonians H; is large, and many of the H; have

relatively small norm. Such Hamiltonians are common in physics and chemistry [31, 34, 35, 38—41]. For

example, a system of interacting bodies or particles is described typically by a Hamiltonian of the above form.
Without loss of generality, assume that the H; are indexed as

IFL]| > (]| = ... 2 [|Hu- ©)

For many problems, the norms || H;|| vary substantially, and many Hamiltonians may have norm || H;|| < ||H,||.
Then one can take advantage of the discrepancy between the norm sizes to derive fast simulation algorithms. The
main idea is as follows:

0 Partition the Hamiltonians H;, H,, ..., H,, into groups using the magnitude of their norms Ideally
Hamiltonians with similar norm magnitudes are grouped together.

1 Approximate e pretending that the sum of Hamiltonians in each group can be simulated exactly.

2 Simulate the sum of the Hamiltonians in each group separately with sufficient accuracy.

3 Combine all the group simulation results, by plugging them into the approximation of step 1, to get the
overall simulation of H.

A rough top-level description of the procedure above applied to two groups and utilizing splitting formulas is
shown in figure 1 below. Nevertheless, our approach is not limited to splitting formulas.

To motivate this idea consider the bound (1) which depends particularly on m, |H; ||and || H, ||, and not on
[[H5]], ---> ||Hum ||- For the sake of argument, suppose m is huge and || H, || >> ||H; ||- Then we can split the
Hamiltonians in two groups { H;, H,} and {H, ..., H,,}, simulate A := H} + H,and B := H; + ... + H),
independently, and then combine the partial simulation results using a splitting formula. Observe thate ™" —
e “as||H;|| — 0and in thelimit the total simulation cost becomes independent of 7. Thus in the limit the
bound (1) holds with 1 replaced by 2. This suggests that when many Hamiltonians are small in norm one should
be able to improve the cost estimate (1) by partitioning them into groups and, for instance, using splitting
formulas of different orders as we indicate in figure 1, and we will explain in detail later.

An application enjoying these properties is the simulation of the Born—-Oppenheimer approximate
electronic Hamiltonian in the second quantized form [42, 43], i.e., the Hamiltonian

N N
1
;
H= Z hpqapaq + — Z hpqrsa;a;a,as, 4)
pq=1 Psg51>5=1

where a” and a are fermionic creation and annihilation operators respectively, and hogs hpgrs € R, p, g, 1,

s =1, ..., \,are provided as input and are computed with respect to a selected set of single-particle basis
functions. This simulation problem has been well-studied in the literature; see e.g. [17, 27-29, 31, 44-47]. The
number of single-particle basis functions A is typically chosen to be proportional to the number of particles in a
given problem. The best classical algorithms can reasonably solve problem instances with A/ in the range 50-70,
and it is believed that a quantum computer able to simulate problem instances with A/ ~ 100 will solve many
important applications ranging from chemical engineering to biology [45]. In these cases, the required modest
number of qubits (typically © (N') [48]) makes these very attractive applications for early quantum computers.
Note that the cost of Hamiltonian simulation remains the primary bottleneck to solving this problem on a
quantum computer, despite the many recent advances in quantum simulation algorithms. To see this, even
without considering the other complexity parameters ¢, €1, the number of Hamiltoniansis m = ©(N*)

in (4) which is substantial. Algorithms that have cost, say, proportional to © (N %), appear impractical because
for ' = 100 we have N'° = 10'8. Indeed, reducing the simulation cost dependence on m (or N) for this
problem has been the subject of considerable recent effort [27-29, 45-47]. Furthermore, in many situations,
ithas been observed that the Hamiltonian norms vary significantly, and many of them are relatively small

[43, 49]. It has been suggested that this could be used in some way to potentially reduce the simulation cost,
without any rigorous analysis [28, 46, 47, 49]. In contrast, in this paper we develop algorithms that use the
discrepancy between sizes of Hamiltonian norms to speedup Hamiltonian simulation and we derive their

cost in full detail.
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Input: &, €, H = Zj";l H;

!

0. Partition H=A+ B

l

1. Approximate H using a splitting formula
of order 2k + 1, pretending that
A and B can be simulated exactly

/\

2a. Simulate A using a splitting 2b. Simulate B using a splitting
formula of order 2k, + 1 formula of order 2kg + 1

—

3. Combine the partial simulation
results with the order 2k + 1
splitting formula to get U

!

Output: (7, ||e‘i"t = ﬁ" <€

Figure 1. Divide and conquer simulation. The Hamiltonians are split into two groups. The elements in each group are summed up to
form A and B, respectively. Pretending that A and B can be simulated exactly we use them to simulate H with a splitting formula of
order 2k + 1. Then we independently simulate A and B with sufficient accuracy using splitting formulas of order 2k4 + 1and

2kg + 1, respectively. Finally we combine simulations of A and B (i.e., the partial simulation results) with the splitting formula of

order 2k + 1to obtain U that simulates Hwith error .

1.1. Summary of the main results

For simplicity and brevity we only discuss here the case where we partition the Hamiltonians in two groups, but
the idea extends to many groups, as we show in section 3. Let H = A + B, with A = Zf”:/] H;and

B =" . Hform" < m,whereagain ||H|| > ||H,| >...> ||Hy||. The bound (1) for the number of
queries N scales with m as m>+1/2k and our goal is to improve that.

1. Suppose we have two arbitrary algorithms Up(7) =~ e 7 and Up(r) ~ e 157, simulating the Hamiltonians
Aand Bfor a certainamount of time 7 € R, respectively. We show how splitting formula structure may be
used to combine (7,; and 53 such that an approximation [7(1‘) to U(t) = e M isachieved. Indeed, slicing the
time finto n intervals of length ¢/ and using the Strang splitting formula [13] we get the overall
approximation

Oy = (Ohr/2) () Dh(r/2))" = (e A7/ 2 Breiar/2yn o e, with 7 = — ©)
n

Then to obtain ||U (t) — U (t)|| = O(e) itsuffices that[|e47/2 — U (7/2)||and ||e~#" — Us(r)| are each
of order €/n. It may be desirable to use higher-order splitting formulas instead of the Strang splitting
formula to combine the partial results, such that error and cost are further reduced”.
In what follows we consider splitting formulas to derive U, and Ug; however, in principle, other applicable
simulation techniques can be used instead for U, and Up. Moreover, in practice criteria other than the
norms could be used potentially to group the Hamiltonians, such as sparsity, commutativity, or unitarity or
any other property which may allow one to use an advantageous algorithm for simulating the Hamiltonians
in that group.

2. We use splitting formulas (of orders 2k, + 1and 2kp + 1, respectively) to obtain the approximations (7:4 (1)
and ffB (), which we combine with an order 2k + 1 splitting formula. The resulting total number of
queries N for simulating H = A + Bsatisfies

% The Strang formula and higher-order splitting formulas are discussed in section 3.2.
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N < 8m/5Ktka=2 max{ny, n} + 4(m — m')55T*=2 max{ng, n}, 6)

where
k
© 1> [AlleQ6el| Bt/ (2) for|lA] > |B],

1/2k ka—k
oy = /| Eule (%5 || Hp e /e) ' 7e(3)"

¢ = m — ) [l (55 n — ) [E e /) 140 ()
Roughly speaking, the two terms of the cost bound above correspond to the cost of simulating the Hamiltonians
in the two groups forming A and B, respectively, plus some partitioning/recombining overhead that is captured
by the maximum function.
The novelty of the algorithm is that it uses substantially fewer exponentials to simulate Hamiltonians of small
norm, relative to the number of exponentials required for Hamiltonians of much larger norm, while maintaining
the desired accuracy. In this respect, different time slices are chosen adaptively to simulate Hamiltonians in
different groups. As a result, it is possible to use few exponentials to simulate a large number of Hamiltonians H;
of relatively small norm for longer time slices, and this reduces the overall simulation cost.
We emphasize that even though the cost bound (6) appears complicated, implementing the algorithms achieving
this bound is straightforward; for example see (5).
Items 3 and 4 below illustrate the impact of the divide and conquer approach, relative to earlier work, as the
number 1 of terms grows and becomes huge.
Item 5 shows the practical advantage of the divide and conquer approach for the simulation of the electronic
Hamiltonian.

3.Forthe case k = k4 = kg = O(1), and assuming that a large number of Hamiltonians have very small norm
suchthat (m — m')||H,11|| < m'||H,||, we canselectnsothatny > n > ngand

N = O(ml 24+1/2k ||I‘I]||t (||H2||t/€)1/2k) + O((ﬂ’l _ ml)l+1/2k ml ||I‘Il||t (HHm/+1||t/5)1/2k)-

In particular, when a relatively small number of H;form A so that i’ = O(m*), and when
(m — m")||Hy ||/ ||Hz || = O(mP),for0 < b < a < 1, we have a speedup over the number of queries in
(1) since

N 1
= O( (1—a)+(1—b)/2k)
Nprev m

independently of t, ¢, where N, denotes the upper bound shown in (1) with the same k. Observe that this
quantity goesto 0 as m — o0.

4.In [10, 13, 19], it is shown how for splitting methods the order of the splitting formula may be selected
‘optimally’ such that the derived cost bound is minimized. We show how the parameters k, k,, and kz may
be similarly selected for our algorithm to minimize a cost upper bound. Let N, ;}ev and N* be the resulting
numbers of queries for the algorithm in [13] and for our algorithm, respectively. We show conditions for a

strong speedup over [13] in the sense that

N*
= — 0 for fixed t, €.
prev T

5. We apply our algorithm to the approximate electronic Hamiltonian (4) of quantum chemistry. Let N be the
number of single-particle basis functions. The number of Hamiltonians in (4) is O (N'*). We can assume that
the largest Hamiltonian norm in the sum is constant. It is known that in practical cases a large number of
terms have very small norm [28, 46, 49]. This allows us to dramatically improve the simulation cost. The table
that follows illustrates this point by comparing our techniques to others. Recall that the important complexity
parameter is A/ and not . We express the cost with respect to A in table 1 below assuming ¢, ¢ are constants.
We remark that our cost estimates of N> — A/7 are consistent with empirical studies indicating that previous
costand error estimates may be overly conservative for practical applications [27].

We emphasize that standard circuits implementing the evolution of the terms in (4) can be incorporated into
our algorithm directly to yield its gate level implementation. For example, one can use the circuitsin [17]
which have been obtained through the Jordan—Wigner transformation to obtain a total gate count
proportional to the number of queries multiplied by A/. Alternatively, using the Bravyi—Kitaev transformation
[50], the total gate count is proportional to the number of queries multiplied by log \V".

4
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Table 1. Summary of the cost, expressed in terms of A/, for different
algorithms for the simulation of the electronic Hamiltonian (4). In
rows 1 and 3 the cost is expressed in terms of the number of queries. In
row 2 the cost is expressed as the total gate count.

Method Cost dependence on A/
Splitting formulas [13, 45] NE& — N?
Truncated Taylor series [29, N8
equation (46)]”
Our algorithms with local basis N3 — N7
functions

* The cost is improved to \V/>gates under strong assumptions on the
basis functions and the computation of h,g, 45 [29].

In the remainder of this paper, we describe our general approach to Hamiltonian simulation in detail, derive two
explicit algorithms that use splitting formulas for the group simulations, and consider their application to
quantum chemistry. The paper is organized as follows. In section 2, we discuss general considerations
concerning the query complexity and different types of queries for Hamiltonian simulation. In section 3, we
review splitting methods, discuss recursive splitting formulas, analyze generally the recombination of partial
simulation results. In section 4 we give two algorithms for Hamiltonian simulation and derive error and cost
bounds, and the speedup they offer. In section 5 we apply our approach to simulating the electronic Hamiltonian
and show how for many practical problem instances our approach gives a significant speedup. Several of the
proofs of our results are included in the appendix.

2. General considerations for Hamiltonian simulation

We briefly discuss some considerations concerning algorithms dealing with the query complexity of
Hamiltonian simulation. As we indicated, algorithms using splitting formulas assume that H = >~ , H;is
given by an oracle, and the query complexity is the number of oracle calls the algorithm makes and that is
proportional to the number of exponentials e %7, It is further assumed that the exponentials e *i* can be
computed exactly, for otherwise any error must be accounted for in the total error estimates. When we are
dealing with query complexity, the implementation cost of each e 4! is not a concern. However, any physical
realization of the algorithm should account for that as well. There are cases where the implementation cost of the
exponential is low, for example, when dealing with the Laplacian A [51], or other operators that can be
diagonalized efficiently, as well as the terms of the electronic Hamiltonian (4) as shown in [17, 50].

The algorithms in [10, 13], as well as the algorithms presented in the paper, use splitting formulas and
express the query complexity in terms of the norms of the Hamiltonians comprising H. The implementation of
these algorithms requires the knowledge of the norms This could be a limitation, although there are applications
where adequate norm information is available or can be easily obtained. In certain applications involving partial
differential equations, the norms are known analytically. Furthermore, we do not require precise estimates of
these norms to implement our algorithms. Overestimates will maintain the accuracy while increasing the cost
accordingly. In the case of the computational chemistry problem that we consider, modulo constant factors, the
norms are given by the ||, |h,qrs| and are obtained by estimating the one-electron and two-electron integrals
numerically with sufficient accuracy. These integrals depend on the basis function set under consideration, and
are typically approximated on a classical computer.

An advantage of splitting methods is that they lead to algorithms that are conceptually easy to understand
since they are products of matrix exponentials. They offer flexibility in the design and analysis of the algorithms
by allowing one to perform partial simulations and then combine their results, due to the fact that they can be
implemented recursively as we show in section 3. They are deterministic in the sense that any repetition
produces the same output with exactly the same accuracy. The simulation methods [24-26] do not have this
property. Finally, splitting methods are regarded as having some appealing features for physics applications.

A splitting method ‘conserves important symmetries of the system dynamics’, and has a ‘ remarkable advantage’
according to [52]. Suzuki also remarks that splitting methods are particularly useful for studying quantum
coherence [36].

There are alternatives to splitting formulas. In particular, [24] uses a different type of query to simulate d-
sparse Hamiltonians. Namely, one is given access to a d-sparse Hamiltonian H acting on q qubits via a black box
that accepts arow index i and a number j between 1 and d, and returns the position and value of the jth nonzero
entry of Hin row i. The paper shows a clever technique applied in combination with oblivious amplitude
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amplification to derive an algorithm simulating d-sparse Hamiltonians with a number of queries

O( TlogT/e

), 7 = d?|H||max > @)
loglogr/¢

where ||*||max i the maximum norm. This is an important result. The dependence of the costone ™ is
exponentially better in the latter case. However, this fact is not sufficient to conclude that the algorithm is
exponentially faster than previously known simulation algorithms, because the size of the other complexity
parameters, T and particularly the Hamiltonian norm || H||ay, needs to be taken into account as well.

For instance, the spectral and maximum norms are proportional to dh~*in the casewhere H = — A, + V},
is a matrix obtained from the discretization of the d-variate Laplacian A and a uniformly bounded d-variate
potential function V on a grid with mesh size / [53]. In this case, the sparsity of His O(d). Thus, for univariate
functions the sparsity is constant. If we set b = ¢, both’ cost estimates (1) and (7) become polynomial in e land
there is no exponential speedup. It is easy to extend this argument to d-variate functions and the situation is
more interesting. In this case H is a matrix of size €@ x ¢~¢. Fork = 1 thebound (1) is proportional to

d€72.5 t1.5

while that of (7), modulo polylog factors, is proportional to
.

Both query estimates are low degree polynomials in each of the complexity parameters. Moreover, polynomial
improvements, such as reducing the exponent of in (7) by one, as in [26], hardly make a difference. This
situation is typical for matrices obtained from the discretization of ordinary and partial differential equations.
We may have an exponential speedup when 7 is at most polylogarithmic in ¢ ', but this is not typically the case
in practice. Indeed [24] does not mention any practical situation where an exponential speedup is realized. These
considerations apply to other recent papers also showing polylogarithmic dependence on e~ ' of the query
complexity [25, 26].

Itis interesting to observe that the query complexity might be low and depend on £ ! polylogarithmically as
in [25], yet when one considers the total gate count the picture may be quite different. An example can be found
in [29, tables 1 and 2] which applies [25] to the simulation of the second-quantized electronic Hamiltonian (4).

In particular the query complexity is proportional to £ V* times a quantity polylogarithmicin ¢, A" and ™",

while the total gate count is proportional to t A/® times a quantity polylogarithmicin ¢, A" ande™".
Improvements of the gate count are possible under significant assumptions on the class of basis functions used
and assumptions about the cost and accuracy in computing the h,, and h,,,, by the quantum algorithm.
Moreover, in chemistry the desired accuracy is not arbitrarily small [28] and thus it may impact the cost only by a
constant factor. The important parameter is ' which is the number of single-particle basis functions used in the
approximation of the Born—Oppenheimer electronic Hamiltonian. Larger values of A give more accurate
approximations of the Hamiltonian operator.

Although improving exponentially the dependence of the simulation cost on £ " is very significant, there are
other issues as well to consider. We already mentioned that the other complexity parameters may be dominant.
The particular type of queries used assumes that one has precomputed and stored the positions and values of all
nonzero entries for every single row of the Hamiltonian. This is also discussed in [54]. Simulation algorithms
relying on oblivious amplitude amplification are probabilistic. This means that for applications where numerous
Hamiltonian simulations need to be carried out, such as in phase estimation, the overall success probability must
be boosted. In particular, making oblivious amplitude amplification deterministic requires a special rotation
denoted by Sin [24, figure 2]. This rotation depends on the exact computation (i.e., with potentially infinitely
many bits of accuracy) of a numerical expression that depends on the input data, and the physical
implementation of this rotation must be exact using quantum gates from a finite universal set. The cost of this
can be immense and this is not explained in [24] which only mentions that such a rotation S exists. The difficulty
in obtaining a deterministic algorithm is a numerical stability consideration.

3. Divide and conquer approach to Hamiltonian simulation

We now formalize the main ideas of our approach, and give preliminary analysis of the general case where
arbitrary simulation algorithms may be used for the simulation of different groups of Hamiltonians. We first
review some details of quantum algorithms based on high-order splitting formulas. In particular, the analysis of

When dealing with partial differential equations, the mesh size h determines the discretization error, which subject to smoothness
conditions often is O(h ), for some v > 0. In terms of the partial differential equation, the combination of the discretization error and the
simulation error will determine the accuracy of the final result. In this sense h and ¢ are related.
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our algorithms in later section will generalize that of [ 10, 13]. Along the way, we have derived slightly tighter
results than those of [ 13] for the usual application of splitting formulas, and we include them in the appendix.

Our goal is to take the Hamiltonian simulation problem and partition it into a number of smaller and
simpler Hamiltonian simulation problems, then solve each one of them, and combine the results. The splitting
should be customized to take advantage of the properties of each of the subproblems, yielding refined bounds for
the overall simulation cost.

In certain applications, for instance in chemistry, Hamiltonians with very small norm can be discarded from
the sum (2), to the extent that this does not affect the desired accuracy.

3.1. Hamiltonians that do not affect the accuracy can be ignored

We formalize the notion that Hamiltonians of very small norm relative to the accuracy € may be discarded, and it
suffices to consider the simulation problem for the remaining Hamiltonians. This may substantially reduce the
cost, particularly for problems where ¢ is not arbitrarily small.

Proposition 1. Let H = A + Bwhere H, A, B are Hamiltonians, t > 0,and e > 0.If
I|IB||t < €/2, €))

and U is such that e 74t — U|| < &/2 then ||le=iHt — U| < e.

The proof the proposition is shown in the appendix. Thus, when the conditions of the proposition are
satisfied, simulating A with error /2 implies the simulation of H with error €.

Remark 1. Equation (8) implies that the aggregate norm of the discarded Hamiltonians must be small, not just the
norms of each of the discarded Hamiltonians. Generally, Hamiltonians cannot be discarded without considering
how many they are and the magnitudes of the other problem parameters for the particular problem instance.

IfB= Z;”: w41 Hj» thenasufficient condition for the Hamiltonians H;in B to satisfy (8) is*

|H|| < j=m+1,...,m )

€

20m — m)t
In practical applications a large number of ‘negligible’ Hamiltonians are sometimes discarded, often using
heuristics. For example, in quantum chemistry, an ad hoc fixed cutoff parameter, say 10719, is used [43].
However, in general the effect of discarding terms must be accounted for in the error analysis.

We will assume that possible discarding of Hamiltonians according to proposition 1 may have happened asa
preprocessing step. Our results and proof techniques do not depend on whether Hamiltonians have been discarded
or not. Thus, from this point on m will refer to the total number of Hamiltonians that we consider for our algorithms.

3.2. Review of high-order splitting formulas
Splitting formulas are a family of operator approximations based on the Lie—Trotter product formula

iHlt/nefint/n" — efth. (10)

lim (67 7iHmt/n)n

n—oo

.€

Using this formula with finite 7 gives an approximation of e ¥, Without loss of generality, and to avoid dealing
with absolute values, we will assume ¢ > 0. Selecting n, often called the Trotter number, large enough such that
the timeslice At := t/n < 1, we approximate e 2 by H;”zl e At with error O(A t2). This gives a second-
order approximation. A third-order approximation is given by the Strang splitting formula
Sz(At) — SZ (I‘Il, - Hm) At) — e—iHlAt/2e—inAt/2 e—iHm,1At/26—iHmAte—iHm,1At/2 e—iHlAt/Z) (11)
with’
e HAL — S (AL) + O(ALY), as At — 0.
Applying S,(A t) over each time slice Atyields the approximation
U = S:an),

where |U — U|| — 0as At — 0. Assume for the moment that Atis chosen such that the number of time slices
n = t/Atisindeed a positive integer. Otherwise, we would have n = [t/At], and a single different final time
slice At' ==t — At|t/At] < At.

Note that [46, equation (24)] considers discarding Hamiltonians in the context of eigenvalue estimation and derives a similar condition to
(9), but without the factor of t which is important for simulation.

5 For simplicity, when the underlying Hamiltonian decomposition is clear we will use S,(Af) in place of Sy(Hy, ..., Hypy At).

7
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Suzuki [36, 37] gave high-order splitting formulas. These are recursive formulas Sy, of order 2k + 1, k € N,
approximating e 2 to error O (A1), They are defined by

Sk (A1) = [S20— 1) (PLADTP Sae—1y(q A1) [Sak—1) (P ADT?, (12)

fork = 2,3,..,with p, = (4 — 4/@=Dyland q, = 1 — 4p,. Applying Sy (At) over each time slice Atand
unwinding the recurrence relation yields a product of N exponentials

N N

U = (Sok(Hyy ..o, Hyy t/m))* = [ e ete/m, Hy € {Hyy oo Hy)y > te/n=mt. (13)

=1 =1
Itis important to observe that Suzuki’s formulas hold asymptotically for sufficiently small A ¢, and do not

reveal the dependence of the error on m or the norms || H;j ||, j = 1, ..., m. Application of these formulas requires
explicit calculation of the prefactors in the error bounds. Typically, cost estimates for splitting methods are
expressed as the product of the number of time slices and the number of exponentials required to carry out the
simulation within each time slice. In particular, the estimates for the simulation error and cost in [13] depend on
m, €, k, thelargest norm ||H, ||, and the second largest norm || H ||. In [13, section 4] the quantity M is defined as

4 )2 1/2k k—1
M= emt||H, | dem (E) , (14)
€ 3 \3

and the time slice is given by At = (M||H, ||)~!. Hence the number of intervalsis n = [t/At] = [M||H||t].
Note that choosing M larger than necessary decreases the simulation error. Under the (weak) assumption
demt||H,|| > &,[13, theorem 2] shows an upper bound for the number of exponentials

1
demt|Hy || Y2k k-1
N < (@m— 15 Hlllt(—em ” 2")2k—4‘;m(§) : (15)
9

This bound is derived as the product of two terms The first factor is the number of exponentials per time slice,
which is bounded by (2m — 1)5%~ 1. The second factor is equal to # which bounds the number of time slices.
Note that if the argument of the ceiling function is at most one, a single time interval suffices for the simulation.
The cost bounds in section 4 for algorithms 1 and 2 are generalizations of (15).

Recall that the upper bound (15) does not account for any finer problem structure, such as the possibility
that a number of Hamiltonians have norms significantly smaller than || F; ||. The Hamiltonians may be
partitioned into groups based on their relative norms, and each group simulated independently with our
algorithms. This leads us to refined cost estimates which depend not just on m, ||H; ||, and || H, ||, but on the
number of Hamiltonians in each group and largest Hamiltonian norm within each group.

Furthermore, under weak conditions which guarantee the argument of the ceiling function in (15) is at least
one (e.g., for sufficiently large m, |H, ||, ¢, or 1/¢), (15) may be bounded to obtain

L k-1
N < (@m — D551 - 2||H1||t(%L”HZH)2k467m(§) = N (k), (16)
&

and from this [13, section 5] shows the ‘optimal’ k (in the sense of minimizing the upper bound N(k)),

k* = max{round[\/% logzs/swl, 1}, 17)
9

Setting k = k* gives the upper bound for the number of matrix exponentials
N< Z—e(zm — 1) m||Hy || e2(3nE It o N (18)

We will be comparing our results against this estimate.

Further observe that k* is given by an extremely slow-growing function of the problem parameters. For
example, for the values m = t = ||H,|| = ¢~! = 10'%,(17) gives k* = 5. Therefore, in most practical cases, one
can determine the optimal value of k by inspection, without carrying out a formal analysis.

3.3. Recursive splitting formulas
Our discussion in this section can be extended to high-order splitting methods. However, for brevity we
consider the Trotter formula to illustrate the ideas.

Suppose the number # of Hamiltonians is large, and we are given a partition, specified by some number
m' < m,as

H=A+B:=(H + ..+ Hyw) + (Hyps1 + . + Hp). (19)
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We consider partitions into two groups to make the ideas of this section clear; it is straightforward to extend to
an arbitrary number of groups pi. As A and B are themselves Hamiltonians, we may apply the Lie-Trotter
formula with respect to them to give

lim (efiAt/nefiBt/n)n — efth' (20)
n—oo
Thus we see that if we are able to approximate e *4*/" and e ~'5*/" then we should be able to combine the

approximations as in (20) to approximate e ", On the other hand, we can recursively apply (10) to e “/"and
e B/" o obtain

n—o00 \—00 B—00

n
lim ( lim (e—iHlt/an e—iHm/t/an)a lim (e—iHm/Ht/ﬂn e—iH,,,t/Sn)ﬂ) — e—th'

The limits may be taken outside and in any order, which yields the recursed Lie—Trotter formula

lim ((efiHl t/an efiHmrt/om)a(efiH,,,ur]t/Bn efiHmt/ﬂn)[)’)n — e iHt, (21)
a,fB,n—00

Compared to (10), there are now three parameters #, o, 3in (21) which reduce the error of the truncated
product approximation as they are increased. Suppose || H || > ||Hg||forsome 1 < ¢ < m; then, grouping the
large Hamiltonians in A and the remaining Hamiltonians in B, it follows that we may want to take o« > Basto
reduce the overall error, while keeping B relatively small to reduce the overall cost. We will shortly derive divide
and conquer simulation algorithms based on splitting formulas which will take three parameters k, k, kg
specifying the order of each formula. Thus we may use a high-order splitting formula for A and alow-order
splitting formula (and also larger time slices) for B, without compromising the error and such that the overall
cost is reduced. Recall that methods which do not distinguish between A and Bwould spend the considerably
more effort required for the simulation of A in the simulation of B as well.

We remark that generalizing (21) to more than two groups of Hamiltonians gives a Trotter step parameter o,
for each group. Alternatively, this formula could be recursed deeper by further decomposing A and B into
subgroups of Hamiltonians and again applying (10).

3.4. Combining different simulation methods
Consider a Hamiltonian as in (2), (3),and U = e . Assume the Hjhave been partitioned into ;1 = O(1)
disjoint groups, where we denote by A, ..., A, the sums of the Hamiltonians in the respective groups. We are
not concerned with how the partitioning is done at this point. As we will see later, the partitioning can be done
adaptively and follows from general cost estimates. In practice small values of 1 will suffice and we will see an
example in section 5.

LetH = A; + ... + A,.. Assume the Ajhave been indexed so that ||A; || > [|A;|| > ... ||A,|. Suppose we
divide the simulation time tinto intervals At = t/n, n € N;we will select n later. Applying a high-order
splitting formula of order 2k + 1with respect to this partition yields the operator

N Neyu ] n Ney
U := (SZk(Ab (RS A;n t/n))n = (H el{c{/ﬂf/nJ > %f € {Al’ EEES) A,u }) Z te = ut, (22)
=1 =1

where N, = Qu — D51 and Sy (A, . A, t/n)isgivenin (12). Then, if we have algorithms INJ/AJ (7)to
simulate (approximately) each exponential e /" in the right-hand side above, we can substitute them into (22)
and obtain the approximation

~ - I\]k,;z ~ n I\Ik,//
U:= (SZk(Al) CEES) A,Lu t/”))n = (H Uﬁ?{f(tf/n)) > &{f € {Ab ERES) A;L}; Z tp = pt. (23)
=1 =1

We emphasize Sok(Ayy ..oy Ay t / n) is constructed by expanding Sy (A, ..., A, t/n) asan ordered product of

exponentials e " and replacing each e ™" with ljg/f (tz). The precise ordering of the product is obtained
from the particular choice of the splitting formula of order 2k + 1; see [36, 37]. For example, using the Strang
formula, for k = 1 we have

So(AL oo Ay, tfn) = U (t/20) Uny(t/20) .. U, (t/20) U (8/m) U, (t/20) ... U (2/20). (24)

In principle, any available method may be used to implement the approximations ﬁAJ, with the possibility of
using different subroutines for different j.
We bound the overall error by

IU— 0l <u—Tll+ T - Ol (25)

Wereferto||U — Uljand |U — U||as the first-step error and second-step error, respectively. Clearly, if both
error terms are O (¢), then so is the overall error | U — U|.

9
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The first-step error depends only on the splitting formula used at the first step, and is independent of the
subroutines used to simulate each group at the second step. We have

HU - /U\” = ||(efth/n)n - (S2k(A1> ~~~)A,u,> t/”))n” < n”eith/n - SZk(Ab LX) A/n t/?’l)H, (26)
where [|e /" — S5, (A, ..., Ay, t/n)||is the error of Sy over a single time slice. Following the approach of [ 13]
(see (14)) for the simulation of a sum of yi-many Hamiltonians, we define the quantity
1/2k k—1
deut||A
TN TR o
c/2 3 \3

which gives the first-step time slice size as At == (M||A; ||)~". The number of first-step time slices is
n = [M]|A;]|¢]. Observe that the final time slice may be smaller than A¢. With this in mind, for simplicity we
assume M||A,; || is an integer.

The second-step error is

1T — U] = 1S (A, o Ay t/0)" — Soi(Ay, ooy Ay, t/0)"

Niju ) Niu -
<n || [ e/ — [] U, (te/n)
/=1 /=1
Nk’“ . ~Y
<n ) |le i te/n — Uy, (e /n)|. (28)
/=1

Hence, a sufficient condition for |[U — U|| < £/2 is that the error of each stage satisfies

. ~ €
|7t/ — Uy, (te /n)|| <

k,pn

Assume the cost N, = N (.o, t, /n) of each simulation subroutine i\j_ojf (ty / n) is expressed in terms of the
number of exponentials of the form e 1%, where the H; belong to the group forming .<, for suitable values
z € R.The total simulation cost is the number of time slices n times the cost per time slice. The latter is
Neu

SN

=1

Therefore the total simulation cost is
Ni i
N=n-|> Ne| (29)

We remark that the results of [13] are important for our analysis. Specifically, they show how the simulation cost
depends on the largest and second largest Hamiltonian norms, which translates here to a dependence on || A; || and || A, ||.

4. Algorithms

We give two algorithms using recursive splitting formulas, and derive worst-case error and cost bounds.
Consider again Hamiltonians of the form H = Y_" | H;, where m is large. Recall that one of our goals is to
reduce the dependence of the simulation cost on m; particularly for problems where there is a substantial
difference between the largest and smallest Hamiltonian norms, and where the number of Hamiltonians with
relatively small norm is significant.

Consider (2), (3), and the partitioning H = A + Bgivenin (19). The two algorithms we present are based on
figure 1. Algorithm 1 is a special case of algorithm 2. The difference between them is that algorithm 1 uses k = 1,
while algorithm 2 considers a general k in step 1. Even though this difference might appear insignificant, the
analysis of algorithm 2 turns out to be much more complicated. Algorithm 1 is simpler to understand and
implement. On the other hand, algorithm 2 is more general, offering one the possibility to reduce the number of
exponentials by selecting k optimally, as we will see later.

4.1. Algorithm 1
The construction of algorithm 1 follows that of section 3.4 for the general case, applied to the partition
H = A + B. Atthefirst step, applying the Strang splitting formula, k = 1, gives the operators

U := (S2(A, B, At))" = (efiAAt/zefiBAte—iAAt/z)n’ (30)

where At = t/nand we will define n below; see figure 1. For the second step, algorithm 1 approximates the
operators e A2 4nd e 1BA using different high-order splitting formulas Uy (At/ 2) and Up(At), of orders

10
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2k, + 1and 2kg + 1, respectively. This yields the overall approximation U of U = ¢~ which is defined by
U= 52, B, Any" = (Th(A1/2) U(An Th(At/2)". (31)

Note that in general U (At/2) Uy (At/2) = Uy (Ab).
Asin[13]let

L E/AR a<ji<m)
DT H /| Husll (! < § < m).

For splitting formulas, such a rescaling of the Hamiltonian norms is equivalent to a rescaling of the respective
group simulation times, i.e., Sox, (Hy, -, Hows |Hi||7) = Sok, (His - Hp, 7) and
Soky (M35 -+ Homs | Huw 11|7) = Sogy(Hin 415 - > Hu» 7). Observe that the Hamiltonians in A and Bare
rescaled by different quantities, which in general leads to different simulation times for A and for B.

The time slice sizes for simulating (m];‘ (At / 2)and ﬁ;; (At)are 1/M, and 1/ M3, respectively, where M, and
Mpare defined below. Thus, applying splitting formulas of orders 2k, + 1 and 2kz + 1for U, and Usp,
respectively, gives

Ur(A1/2) 1= Sop, (Hiy .y Howry 1/ MgMAIBIA/2IG) (1, H o, 84 /M), (32)
Us(At) i= Sop,(Hont 4 15 - or Homs 1/ Mp)MellHwall Al (10 Hyy 65/ Mp). (33)

Since we have effectively rescaled the simulation times by dividing by the respective largest Hamiltonian norms,
we are actually subdividing an interval of size || H; || At /2 into [My || H; || At /2] intervals of length at most 1/M,
for the simulation of Uy (At/2), and into [Mg||H, 41| At ] intervals of length at most 1 /M for Us (Ab). Clearly,
the last of these subintervals in either case may have length less than 1/Mj or 1/Mp, respectively. In such a case,
the length of the last subinterval is equal to 64 /M4 or 8g/ Mg, with 8, := My ||H;||At/2 — | My||H;||At/2]|and
O = Mg ||Hy 11| At — | Mg ||Hyw11]| At |, respectively. That is the reason why we have taken the floors of the
exponents in the first factors of (32) and (33).

From (25), we have

IU— 0l <u—"0ll+ T - Ol (34)

Thus, to guarantee | U — U|| < &, werequire |U — U|| < ¢/2and||T — U|| < /2.

We consider each error term separately. The first error term in (34) is independent of our implementations
of U and U, and results only from the first-step Strang splitting and time slice size At = t/n, n € N.From
lemma 2 in the appendix, we have

~ 2
IU-Ul < gtAtZIIAHllBH - max{[|A[|, [|B]|}. (35)

From (29) the cost of our algorithm is proportional to #, and therefore we would like to minimize this quantity.
Setting the right-hand side of the equation above to /2 we obtain

n > 4 || All|[B| max{[[Al|, B[} /3¢ (36)

For instance, when ||A|| > ||B||, from the triangle inequality bounds ||A|| < #/||H; | and
1Bl < (m — m')||Hyy 1|}, toobtain ||[U — U|| < e/2 it therefore suffices to select n1as

n = [\J4/3 m/|[H[ty/(m — m')|[Hy ][t/ ]. (37)
Now consider the second error term in (34). As||S, || = ||S,|| = 1, we have (see equation (28))

|U — Ul|=1S:(A, B, A" — Sy(A, B, At)"|| < n]|S,(A, B, At) — $,(A, B, Ap)|

< nje A0/ 2e-BALe—IANY/2 _ [T (At /2) Ug(At) Uy (At/2)]|

<nQlle 372 = Tu(At/2)]| + e — Tp(An)),
where the terms ||e =42/ — {J, (At/2)||and ||e"BA* — Us(At)||bound the error of each Uy (At/2) and
Us(At). Hence, toensure || U — U|| < /2, we require

|e"481/2 — T (At/2)|| < e/8n  and  |leBA — Up(Ar)| < e/4n. (38)
The quantity M, is defined by applying (14) to the simulation of A with time ¢ /2n and error at most & /8, to obtain
dem’(t/2n) || Hs || JI/ZkA 4em’ (E)k’\l _ ( 16em't||H, || )I/ZkA 4em’ ( 5 )"Al
(¢/8n) 3 3

3
Remarkably, observe that the factors of n have canceled, i.e., the time interval size for each application of L7A (At / 2)
depends only on the original problem time and error parameters and not on the number of time slices # we

My = My (ky) = ( 3

3

11
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subdivided ¢ into. Further note that when 16em't||H || < &, then M, isbounded from above independently of e.
This means that we are dealing with an easy problem for the simulation of A, so the interesting case is when
16em’t|Hy|| > ¢, and we will consider this case from now on. Similar considerations apply to the simulation of B.

To bound the cost of each Uj (At/2), we apply [13, theorem 1]. Thus, the number of exponentials Ny
required for each application of (7;1 (At / 2) satisfies

Ny < 2m' — D51 [M, [|H || At/2].

We have already mentioned that the quantity [ My || H, || At /2] gives the number of subintervals of length at most
1/M, that each time slice || H; || At /2 is subdivided. When the ceiling function argument is at most one, no
subdivision is necessary. Then it may be possible to reduce the cost further by decreasing k.

Now consider (fj;g (At). For the simulation of B for time A t = t/nand error at most € /4n, we set My(kg) as
in (14) to obtain

! 1/2ks ’ kg—1
My = My(ky) ::(46(7”’1 —m )(t/n)||Hm/+2||) 4e(m — m)(g)

(e/4n) 3 3
_lww—mwwmﬁ”m%mwwﬂhl
€ 3 3 '

Once again, Mg is independent of n. As above, the interesting case is when 16e (im — m’) ||H,, 12||t > €, because
otherwise My would be independent of sand the problem would be easy. Applying again [13, theorem 1], the
number N of exponentials for each application of U (At) satisfies

N < 2(m — m') — 1)557 [ My||H, 41| At].

In this case the quantity [ Mg || H,,, 1 1|| At ] gives the number of subintervals of length at most 1/Mj that each time
interval of size || H,,r 4 1|| At is subdivided.

We may now bound the total cost of our algorithm, i.e., bound the number N of exponentials of the form
e iHitj, j € {1, ..., m}, thatare used to construct U.From (29), we have

N=n- QN+ Np)

<n- (4m’5kA1[MA||Hl||i—| +2(m — m')5kBl[MBHm,H||H). (39)

We summarize the results for algorithm 1 in the following proposition.

Proposition2.Let H = Y1 | H;, || H|| = ||H|| = ... = ||[Hul|, m > 2, with given partition
H=A+B A=Y" HandB=Y" . H.Lett>0andl > ¢ > 0, and assume 16en’||H, ||t > ¢ and
16e(m — m')||Hy 12|t > €. Let n € N such that

n > 4 ||A][|B][]|C]| /3¢, (40)

where||C|| = max{||A||, ||B||}. Forany k,, ks € N, define the quantities

M, — ( 16em’t||H, | )””‘A dem! (5 )kﬂ

3 \3

3

M, (16e(m — m)t||Hyr o] )“2"“ de(m — m’)(S)kﬂ‘1
B = = >
€ 3 3

and let U be defined by (31). Then the number N of exponentials for the approximation of e H* by U with accuracy
€ is at most

N < 4m’5’<A1n[MA||Hl||2L] +2(m — m’)SkBln[MB||Hm/+1||L—|. (41)
n n
Forx,y > 0,itiseasytoshow x[y/x] < max{x, 2y}. Thus we have the following corollary.

Corollary 1. Let ny = M, ||Hy ||t and ng = 2Mg||H,11||t. The bound to the number of exponentials of proposition 2,
equation (41), may be expressed as
N < 4m/5% 1 max{my, n} + 2(m — m')5% 1. max{ng, n}. (42)

Remark 2. Observe that if 14, ng > 1, then modulo constants (42) implies that the cost for simulating
H = A + Bisupper bounded by the sum of the cost upper bounds for simulating A and B separately.

12
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Remark 3. The bound (42) is minimized with respect to k4 and kg by appropriately selecting optimal values
ki, ki suchthat1 < kF < k™ and 1 < kj < k™™, where

S [ \/% log,5 ,5(16e m’HHZHt/E) ], k{ma) — [ \/%log25/3(16e (m — m,)HHm'+2||t/5) —|

Remark 4. Consider (42). If n > My (1) ||H, ||t, then k, is optimally selected to be 1. Alternatively, if

My (k¥ ||Hy ||t > nthen ky is optimally selected to be k{™*. Similar remarks apply for kg, where instead of
m’, ||H, |, and My weuse (m — m’), ||H, .|, and Mp. We give formal conditions for optimally selecting the
splitting formula orders for the general case in section 4.3.

Itis relatively straightforward to extend algonthm 1 to the case where H is partitioned into 4 > 2 many groups
H = A; + .. + A,,. The overall approximation U of U = e P follows from (22) and (23) with k = 1 and becomes

U= (§2(A1: AZ) ~--A/1,) At))na (43)

where S,(4;, A, .. A, At)isgivenin (24). The analysis is similar to the case 1 = 2 considered above. The
main difference is that lemma 2 in the appendix no longer applies for bounding the first-step error (35), and we
use [13, lemma 2] instead, which gives a similar a result. The rest of the analysis is the same as that in the proof of
proposition 2. We summarize our results in the following theorem.

Theorem 1. Let H = >=1" | H;, ||Hi|| > ||H|| > ... > ||Hpul|, m > 2, withgiven partition H = -1 A;, 1 =
O(l).Let Aj = 2161 H;j, wherem; = |Ij, I; zsasetofconsecutzvemdzces, NIy, = Sforj= ¢, and U“ I =
{1,..,m}, m > p > 2.Suppose||Ay|| > [|Ar]| >...> ||A,ll. Lett > 0and1 > € > 0.Letn € Nsuchthat

16
= ?MHA1||WM||A2||t/5- (44)

For k; € N, define the quantity

k
8epum;t|[Ho )% 8¢ (51
”AJ’ = mj”H(j,l)Ht (% 5 3 >

where H,j 1y is the Hamiltonian that has maximum norm among the H;, i € I; and similarly H,; ) is the
Hamiltonian with the second largest norm® in the same group of Hamiltonians, j = 1, ..., u. Consider U tobe

defined by (43). The number N of exponentials involving the Hy,...,H,, required for the approximation of e\t by U
with accuracy € is at most

1
N < 4) 55 'mjmax{n, ny}. (45)
=1

The proof follows from that of theorem 2 which we state in the next section and is found in the appendix.

Remark 5. The way the Hamiltonians are grouped will influence the upper bound (45). Ideally, the formation of
the groups should minimize this upper bound. Roughly speaking, Hamiltonians of relatively large norm should
be put in groups of relatively small cardinality.

Remark 6. The bound for the number of exponentials shown in the previous theorem holds under general
conditions and does not depend on how the partitioning of the Hamiltonians into groups is performed. Finding
parameters that minimize equation (45) is a separate task, which is to be carried out on a classical computer.

4.2. Algorithm 2
Algorithm 2 generalizes algorithm 1 by applying an arbitrary splitting formulas at its first step instead of applying
specifically the Strang splitting formula; see figure 1. The details and analysis of algorithm 2 are similar to, but more
complicated than, those of algorithm 1. We state the main results here, and provide the proofs in the appendix.

We again consider the simulation of a partitioned Hamiltonian H = A + B, with
A=H +..+ Hy, B=H,y;1 + ..+ Hy.Justlike in algorithm 1, the second step of algorithm 2 uses
splitting formulas of orders 2k4 + 1and 2k + 1 for the simulations of A and B, respectively, and combines the
partial results using a splitting formula of order 2k + 1.

Proposition3.Let H = 1" | H;, [|[H\|| > ||Hy|| > ... > |Hpyl|, m > 2, with given partition
H=A+B A=y HandB=5",,, H Let|C| = max([All |B])and D] = min{ ], |B]).

6
It may happen that || H(j || = ||Hjll-
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Assume||Cl||t > 1, 16em’||H ||t > €, 16e(m — m')||H,y 12|t > €, and 16¢||D||t > €. For k, ka, kg € N, define
the quantities

8e (5\k
> |[Cllr 6l Dt/ 25 (3)
1/2k ka—k
s = [ (5 /e ) e (5)
kg—k
¢y = (m — ) [l (S (m— )| Hale /) 140 (2)

andlet U be defined by (23). Then the number N of exponentials for the approximation of e by U with
accuracy € isat most

N < 8m/55 k=2 max{my, n} + 4(m — m')5*t%=2 max{ng, n} = n(k, ks, ks). (46)

Remark 7. If k = 1, we get the costbound of algorithm 1 (up to small constant factors). Note that in some cases,
e.g.when||D||t /¢ is large, even though we could use k = 1, selectinga value k > 1 mayyield # thatis
substantially smaller than that shown in (40) in proposition 2.

Remark 8. If any of the conditions ||C||t > 1, 16em’||H, ||t > €, 16e(m — m')||H, 1|t = €,0r16¢||D||t > €
are violated, then we end up with an easier simulation problem as it can be seen in the proof of this proposition.
Roughly speaking, it would imply that € is relatively large. So, in a way, these conditions specify the

interesting case.

Itis again relatively straightforward to extend algorlthm 2 to the case where H is partitioned into ¢ > 2 many
groups H = A; + ... + A,,. The overall approximation U of U = e " then becomes

i\]/ = (§2k(A1: Ay, .. -A/u At))n) (47)

where Sy (A, Ay, .. A, At)is constructed as in (23). We summarize the results for this case in the following
theorem whose proof can be found in the appendix.

Theorem 2. Let H = 31" | H;, | H\|| > ||Hy|| = ... > |Hy||, m > 2, withgiven partition H = Y1 | A, pn =
O(l).Let Aj = Z,el Hj, wherem; = I, I; zsasetofconsecutzve indices, ;N 1, = S forj= ¢, and

Ui =11, ...m},m > p > 2.Lett > 0and1l > ¢ > 0.Suppose[|A|| > [[As]| = ... = [|A, [ pllA][t > 1
|4z ]|t = e, and pm;l|Hj o ||t > €, where Hy; 1) is the Hamiltonian that has maximum norm among the H;, i € I;

and similarly Hj ) is the Hamiltonian with the second largest norm in the same group for j = 1, ..., p. For
k, ki, ..., k, € N, letn € N besuch that
8epul| Az ||t )/ 4e ( 5\
n() > o] SelAale ( ) : (48)
€ 513

and define the quantities

w1 H s o |18 Y/ 2K ki—k
326%) 76(5)1 , =1, (49)

na;(k, kj) = m;||H, 1>f(
5 €

Consider U to be defined by (47). The number N of exponentials for the approximation of e~ H by U with
accuracy € is at most

©w
N < 82 5k+k1*2mj max{n(k), na,(k, k)} = nk, k, ..., k). (50)
=1

Remarks 5 and 6 apply to this theorem as well.

Remark 9. The condition ||A; || > ||A;|| > ... > ||A,||is used here for simplicity. For general groupings, the
theorem still holds with the quantities || A; || and || A; || replaced by the largest and second largest group norms.

4.3. Selecting the order of the splitting formulas

For any partitioning of the Hamiltonians into p groups we want to determine the order of the splitting formulas.
The parameters ky, ..., k, allow splitting formulas of different orders to be used for the Hamiltonians in each
group. The parameter k determines the order of the splitting formula used in the first algorithm step. Ideally we
want to find the optimal parameters k*, kl*, e k;‘ that minimize the simulation cost bound (50), which takes
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the value n* := n(k*, k' ..., kff). This expression is complicated and to simplify matters we provide sharp
upper bounds k™9, k™™, k(™™ o the optimal values.
Proposition 4. The simulation cost bound (50) of theorem 2 is minimized by integers k*, k;*, ..., k;f satisfying

LS R* kM, 1<k <™ j=1,..,p (51)
where

ka0 .= max {round[\/%logzsﬁw ], 1} (52)
€

and

32ep m;||Hj ||t
k](_max) = max{round(\/%logzshw ]) 1}, i=1, ..., u (53)
€

Proof. Wehave 1 < k*, k', ..., k*

s Ky

Let the functions g (k) := 5*n(k)and h;(k;) = 5*kin 4, (k, kj) /3F. Note that k cancels out in the latter case so
hj(k;) is a univariate function. Consider minimizing g( - )and h;( - ) independently. For g(k), setting its derivative
to zero gives

 Sepllda
3

W2 0,
3
which gives K3 a5 in (52). Repeating this argument for h;(k;) gives k](max) asin (53). Since g( - )and hy( - ) are
log-convex functions [55], the values k™ and k}max) give the respective minima.
Observe that we may rewrite the right-hand side of (50) as

1 B
nk, ky ..., k) = % > mymax{5**kin(k), 55 king (k, k)} = % > mjmax{5fig k), 3*h(k)}.  (54)
=1

=1

Now assumek;, ..., k, are arbitrary but fixed. Then n (k, ki, ..., k,) = n(k™™), k ..., k,) fork > kW3 since
the arguments of the maximum function cannot decrease. By a similar argument, for k; > k}max), we have

nk, ki ..., kj s k) = nk, k ...,k](max) - k). Therefore, the minimizers k¥, k5. k:f of (50) satisfy
k* < k™2 and k;k < k}max),j = 1,..., fh 0

Hence, without loss of generality we may restrict to parameters k < k™3 and kj < k}ma"), i = 1..pu.

Remark 10. For each individual group, (53) shows that small cardinality and small Hamiltonian norms reduce
the order of the splitting formula that suffices for its simulation.

Remark 11. Observing the arguments of the maximum function in (50),if n(k) > n A (k, k;) forall k and some
j,then k;k = 1.Ontheotherhandif n(k) < n4 (k, k;) for k < k™9 and some j, then k' = k](max). Thus,
roughly speaking, Hamiltonians of small norm may be grouped and optimally simulated with a low-order
splitting formulas, whereas Hamiltonians of large norm in general require higher-order formulas.

Remark 12. The quantities defined in (52) and (53) grow very slowly with the problem parameters e, ¢, p1, m;
and the Hamiltonian norms Hence from a practical standpoint, even if the problem parameters take huge values

the values of (52) and (53) will be moderate. Thus, is practice it is not difficult or costly to perform an exhaustive
search and obtain the k*, k¥, ..., k;k .

4.4. Speedup

We illustrate our results by showing the speedup of our algorithms relative to those in [13] for a number of cases.
Generally, our approach is preferable when there is a disparity in the Hamiltonian norms and many of them are
very small.
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From [13, section 5], we have the number of exponentials is bounded as

1
= k
Mmm=0nwmdﬂ%if%§), (53)

where k is the order of the splitting formula. Selecting k = k* asin (17) this becomes

N = OCm ) - e (im0, .

prev

Note that the second factor e2V} 5 0 "™ — O ((mt ||FL || /€)°) forany 6 > 0. The explicit expressions for (55)
and (56) are shown in (16) and (18), but here we use asymptotic notation to focus on the problem parameters
and to ignore the constants.

For simplicity consider u = 2,i.e, H = A + B,with A = H; + H, + ... + H,,», m’ < m,and Bequal to
the sum of the remaining Hamiltonians, as in (19). The number of exponentials for algorithm 2 is shown in (46)
in proposition 3. Assume that||A|| > ||B||and in addition assume

(m — m")|[|[Hy || < m'|[Hy. (57)

Note that the left-hand side of the inequality above is an upper bound to || B||, and the inequality relates that to the

number of Hamiltonians forming A times the overall second largest Hamiltonian norm. This condition is easy to

checkin principle, and it holds in cases where the original Hamiltonians have quite disproportionate norms
Clearly ||A|| < m'||H;||and ||B|| < (m — m')||H,, 1| and we select the parameter n of proposition 3 by

_ / , 1/2k k
€ 513

The quantities k*, k¥, ki and k(ma0), k(ma0) | j(mao) are shown in proposition 4. Let n* = 7 (k*, kf, ki) denote
the optimal cost bound of algorithm 2. The cost bound of proposition 3 satisfies N < n* < n(k, ka, kg).
For different values of the parameters we have the following speedups.

1. Comparison when all splitting formulas have the same order, i.e., k = k4 = kg, k = O(1):
The costbound (46) has the same dependence on tand ¢ as that of (55), so when we divide the two cost
bounds to obtain the speedup the parameters t and ¢ cancel out. From proposition 3, (57) and (58), we have
max{na,n} = cnyand max{ng, n} = c,n, wherecy, ¢, > 1 are constants. Hence, (46) gives cost
N < n(k, k, k) < 8m'5%~2qmy + 4(m — m’)5%*2en
<C- (m?|Hllt (m'||Hy[t/e)'/?* + (m — mym!||Hi[|t (m — m')||Hyio||2/€)/2),

where Cis a constant, and hence the speedup over [13] (with the same k) is

I\2+1/2k , o / 1/2k
Nprev(k) m m ﬂ’lHHzH

forall ¢, t. Therefore, the algorithm in [ 13] is slower than the one in this paper by a factor proportional to a
polynomial in m’/m, the degree of which is in the range [1, 2.5]. This is particularly important
when m' < m.

2. Comparison to the cost of [13] with optimally chosen parameter:
We use the previous case to derive a rough estimate. Observe that, for fixed k we have

Nprev (k)
N*

prev

= O(m||H,||t/e)"/?.

Thus, again consideringk = ky = kg, k = O(1), we have

N < 7’](](, k, k) Nprev(k)
Npee  Norew () N,

prev prev

‘4@QTM%WYﬂ+OF%W_mNM”WYﬂ’ (60)
m e m €

which follows from (56) and (59). Therefore, for fixed ||H, ||, t, and ¢, the algorithm in [13] with optimally
chosen parameters remains slower than algorithm 2 with arbitrary k = k4 = kg. The speedup depends ona
polynomial in m’ /m, the degree of which is in the range [1, 2].

Clearly, optimally selecting k, k4, and kg as in section 4.3 can only improve the speedup over [13].
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3. Comparison among optimal methods, i.e., using the optimal splitting formulas in the respective cases:
Assuming that all complexity parameters are fixed, with the exceptions of mand m’ = O (m°/®), we have

N *
— <= — 0, (61)
Nprev Nprev m—o0

where 7* is given by (46) for optimally chosen k, k4, and k. The proofis given in appendix A.5.
In this sense we achieve a strong speedup over [13].

4. Comparison when a significant number of Hamiltonians have very small norm relative to | F ||:
Recall that we are interested in simulation problems where a significant number of the Hamiltonians H;are
relatively small in norm, where existing simulation methods do not take advantage of this structure.
We use two parameters 0 < b < a < 1to describe the relationship of || B|| and || A]|. This approach has
applications to problems such as the simulation of the electronic Hamiltonian, as we will see in the following
section. Suppose

(m — m)||Hy ||/ ||| = O((m — m")?) for a given b € [0, 1). (62)

For example, if | H, || = 1and (m — m') = 10°, while the Hamiltonians in the group composing B have
norms at most 10 %, then || B|| < 10° - 10~ = 102, i.e. b~ 1/3. Note that for a given problem instance we
can consider || H, || to be fixed and use (62) to partition the Hamiltonians into the two groups.

Recall1 < m’ < mbecause m’ is the number of Hamiltonians forming A. Further suppose

m' = O(m*) for some a € [0, 1). (63)

Forthecase k = k4 = kg = O(1) above (where the speedup is independent of € and #), using these assumptions
in (59) we obtain

n(k,k,k)io ma \2+1/2k +Oma (m — m'y! I/Zkfo )
N (U 1 e B e P

Similarly, for the case of (60) with fixed || H ||, ¢, and &, using the new assumptions we obtain

N 1
NG = O( ml—a—b/2k )

prev

Therefore, selecting k such that the exponent of the denominator is positive yields a speedup the grows
with m. In the next section we will use the parameters a and b to estimate the cost of our algorithms for
practical instances of the electronic Hamiltonian.

5. Application to quantum chemistry

Solving difficult problems in quantum chemistry is viewed as a primary application of quantum computers. We
apply our algorithms to simulate the electronic Hamiltonian, which describes molecular systems. Quantum
algorithms for Hamiltonian simulation also have applications in the calculation of electronic energies, reaction
rates, and other chemical properties [11, 17,31, 48, 56].

Robust classical algorithms for this simulation exist (e.g. diagonalization), but in general they are intractable
as their cost grows exponentially with the number of particles. Thus, large molecules are out of reach for classical
computers [17]. On the other hand, quantum algorithms [17, 48] can efficiently simulate the second-quantized
form of the approximate Born—Oppenheimer electronic Hamiltonian (4). This Hamiltonian can be represented
intheform H = 277:1 H; that we consider in this paper. There exist quantum algorithms simulating (4) with
cost that exhibits a polynomial dependence on m. Unfortunately, the combination of the size of 7 and the degree
of the polynomial would make the simulation cost prohibitive in cases of interest [17, 23, 41, 45, 46]. Hence,
reducing the cost of Hamiltonian simulation will have a significant impact in chemistry.

5.1. Electronic Hamiltonian
Recall the Born—Oppenheimer approximate electronic Hamiltonian in second-quantized form (4), i.e.,

N ) 1 X ..
H:= Z hpqallaq + = Z hpqrsallaq' a,ds.
pa=1 2 pgrs=1

The quantities h,, and h,,,,, are obtained by considering ' single-particle basis functions (spin—orbitals) taken
from a given family of such functions. Particularly, the h,, and h,,,, are one-electron and two-electron integrals,
respectively, as defined in [17, section 3] through a set of A/ basis functions. The a; and a, are the creation and
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Table 2. For simulating LiH with bond distance 1.63 A, in [49]

they approximate the Born-Oppenheimer electronic Hamiltonian
in two ways. The first approximation uses a minimal basis set
(STO-3G) and has m = 231. The second approximation uses a
more accurate basis set (TZVP) and has m = 22155. In each case m
is the number of nonzero h,, and h,,.. The quantity ' is the
number of [/1,4| and |hg,| that are larger than the different cutoff
values. The quantities of the leftmost four columns in the first two
rows are are taken from [49, section 3.2]. The quantities of the
leftmost four columns in the remaining rows are estimated from
[49, figure 10]. We consider H = A + B, where A is the sum of the
m'’ terms corresponding to |lyyl, |hpgr| larger than the cutoff, and B
is the sum of the remaining m — m’ terms The norms of A and Bare
estimated using the triangle inequality, i.e., ||A|| < »/||H; || and
1Bl < (mn — ) [yl where [Fi | 3 o> [y || > o Holl
and for simplicity we assume ||H; || ~ 1. Thus, we estimate

|A]| ~ m'and||B|| =~ (m — m")x cutoff, rounded to the nearest
power of 10 for simplicity.

Basis set cutoff m m’ ||l |IB||
STO-3G 10710 231 99 10% 107#
TZVP 101 22155 10315 10* 10°¢
TZVP 107* 22155 9000 10* 1
TZVP 107° 22155 6000 10* 10
TZVP 1072 22155 2000 10° 10

annihilation operators for the pth orbital, which encode the fermionic exchange antisymmetry of the problem.
The general Hamiltonian form is the same for all molecules. Therefore, the Hamiltonian of a particular molecule
is defined by AV and the h,,; and 1.

Using the terminology of the earlier sections of the paper, the Hamiltonian above can be written in the form
m
H=) Hj, (64)
j=1

where m = ©(N*), and H;are Hamiltonians obtained from the terms of (4) by combining adjoint pairs; see e.g.
[17,49]. Thus, modulo constant factors, the norms || H; || are given by the | 4| and |14, These quantities
depend on molecular geometry and the chosen set of basis functions [42, 43]. For basis functions that are
spatially localized, which are called local basis sets, many of the |k, and |/,| are small or very small relative to
their largest magnitude [43, 57, 58]. We use this disparity to partition the Hamiltonians into groups for our
algorithms.

For example, [49] considers the quantum simulation of the lithium hydride (LiH) molecule with different
choices of basis sets. The authors of [49] consider Slater-type (STO-3G) [59] and triple-zeta (TZVP) [60] basis
sets and in both cases they find that a substantial fraction of the H; have quite small norm. In table 2, we illustrate
how one can partition the Hamiltonian using the ki, 1,4, values shown in [49] to obtain H = A + B, where the
Hamiltonian B is the sum of the terms for which the corresponding | h,,| and || are less than or equal to
different ‘cutoffs’ and A is the sum of the remaining terms Clearly, different partitions lead to different bounds
for the norm of each group, which will be reflected in the cost bounds of the algorithms as shown in theorems 1
and 2. Extending thisideato . > 2 groups is straightforward.

We digress for a moment to remark that in practical applications of quantum chemistry, the computational
cost is often reduced by discarding terms of H that have ‘negligible’ norm relative to some cutoff, say 10~ *°
[43,49,57], but this cannot be done in an ad hoc way. Recall that proposition 1 shows that we may possibly,
depending on the particular problem instance, discard certain terms from H, subject to the relationship between
the cutoff, ¢, ¢, and the number of terms (m — m’) below the cutoff. On the other hand, when the product of the
cutoff with (m — m’) exceeds £/t, we cannot arbitrarily discard (m — m’) terms, even though individually they
may be tiny, because this could introduce truncation error that would exceed the desired simulation accuracy.
This is also made particularly clear in the last three rows of table 2, where excluding the terms below the cutoff
may introduce error exceeding any reasonable accuracy as evidenced by the respective estimates of || B|.

5.2. Simulation cost
In chemistry problems the desired simulation accuracy is not arbitrarily small [28], while N can be quite large so
that (64) adequately represents the system of interest [46]. Therefore, the important parameters affecting the
simulation cost are the number of single-particle basis functions A/, and the magnitudes of the h,,, and k..

In the second quantization, i.e., the occupation number representation, states are given by linear
combinations of N -bit strings, where a 1/0 indicates which orbitals are occupied /unoccupied by electrons,
respectively [42, 43]. Thus H acts on N qubits. Each Hamiltonian H; in (64) can be represented by tensor
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products of Pauli matrices through the Jordan—Wigner transformation, and can be simulated efficiently using
O (N) standard quantum gates [17]. Alternatives to the Jordan—Wigner transformation have been proposed,
such as the Bravyi—Kitaev transformation [50, 61] which improves the gate count for simulating the individual
H;to O(log V). Hence, our cost bounds for the number of queries (exponentials) immediately translate to
bounds for the total gate count through multiplication. Thus, using [50, 61], modulo polylogarithmic factors,
the total gate count is proportional to the number of queries. This is what we will consider for our algorithms.

Consider now the simulation of H using splitting formulas. For A/ spin—orbitals, the number of terms in
(64)is m = O(N*). Naively applying an order 2k + 1 splitting formula (15) yields a number of queries (i.e., a
number of exponentials)

ONS2/H[E [t (|Fblt/£)/2(25/3),

Thus, for arbitrary k the cost grows with A/ atleastas A%. In particular, if we use the Strang splitting formula
(k = 1), the number of queries is proportional to N'1°. Hence, a straightforward application of splitting
formulas yields a number of queries in the range A”® — A/1%, which clearly becomes impractical even for
moderate N (e.g., N” = 100).

Improving this cost bound is critical for quantum computers to have an impact in quantum chemistry
applications. A sequence of papers [27-29, 45—47] describe the recent progress. They show both analytic and
empirical results. Some of them perform gate-level optimizations across queries, and are thereby specific to the
particular problem instance. In [45, table 1], the number of queries using the Strang splitting formula is shown to
be proportional to N'1%, which corresponds to the one that follows from [13] as shown above. It is also shown in
[45, appendix B] that the number of queries can be reduced to become N ?, and it is conjectured that the proof
leading to this reduction in the case k = 1 could be extended to high-order splitting formulas (k > 1). The paper
also considers the implementation of the queries using the Jordan—Wigner transformation. Thus, the total gate
count becomes proportional to A/'%, but allowing parallel gate execution the circuit depth becomes
proportional to A/?. Moreover, the authors of the paper carried out numerical tests of molecules from a random
ensemble suggesting a number of queries proportional to A/8 as shown in [45, table 1]. Gate-level optimizations
on the entire circuit are considered in [47]. In particular, using the Jordan—Wigner transformation for
implementing the queries, the authors of that paper conclude that their optimizations make the total gate count
proportional to the total number of queries. Therefore, for the Strang formula as presented in [45], the total gate
count is proportional to /%, and allowing parallel execution in conjunction with gate-level optimization leads
to a circuit with depth proportional to N/7. In [28, 46], it was argued using empirical evidence that similar
improvements on the number of queries are possible for certain restricted but commonly used basis function
sets, and this may lead to a number of queries proportional to N> — N7, while [27] reports even better
empirical query estimates in the range A>° — A%, Finally, a recent paper [29] that uses the simulation method
of [25] with different queries than the matrix exponentials used in splitting formulas, obtains a total gate count
proportional to A%, modulo polylogarithmic factors. Furthermore, in a special case they are able to obtain a
total gate count proportional to A/> (up to polylogarithmic factors), under strong assumptions on the basis
functions and the computation of the hy,, h,,,, and the resulting accuracy and cost. However, we point out that
other authors consider the computation of these quantities to be ‘complicated business’ in general [43,
section 9.9.5].

Further note that the possibility of using problem specific information in quantum chemistry (e.g.,
simulating different Hamiltonians for different amounts of time, or simulating them in a certain order) to
improve the simulation cost was suggested in [27, 28, 45, 47, 49] without presenting an algorithm or a rigorous
analysis exhibiting error and cost bounds. Our goal is obtain rigorous simulation cost improvements under
fairly general conditions.

5.3. Divide and conquer simulation

Consider a set of local basis functions. In general, the number of non-negligible |h,,| and |4, is significantly
less than N*. In [43, section 9.12.2], it is argued that for sufficiently large molecules this number is of order A2
In [46], the authors claim that this number can scale even as N usinglocal basis functions; however, for practical
problems scaling closer to A2 is expected. Also, [28] has found this number to be O (N') modulo logarithmic

factors. Using these estimates, we assume || H|| < Y12 || Hj|| = O(m?®). Wealsoassume A = ZT:/Iijith
m' = O(m*),and B = 37", Hywith|[B|| < (m — m)||Hy || = O(m?),with0 < b < a. Thus, [43]

suggests thata = 1/2 and [28, 46] suggest thata = 1/4. Observe that our assumptions are consistent with the
situation depicted in table 2.

Consider algorithm 2 with H = A + B. Assume tand ¢ are arbitrary but fixed, and let us study the
simulation cost with respect to /. Even if we do not select the optimal values for k, k4, and kg, and we simply
assume they are O(1), we obtain a simulation cost improvement. The quantities of proposition 3 become
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Table 3. Comparison of empirical and analytic cost bounds with
respect to the number N of single-particle basis functions for the
simulation of the electronic Hamiltonian. The top half of the table are
estimates taken from the literature, ignoring any polylogarithmic
factors. The bottom half of the table is the estimated scaling for
algorithm 2, where the parameters a and b have been estimated; see the
text for details. We give a range for the cost dependence in cases where
it varies with some of the algorithm parameters, or when the cost is
obtained empirically. All cost estimates refer to the number of queries,
except in the case of [29] which does not use splitting formula and
presents the total gate count. For all estimates concerning queries, the
transition from queries to gate counts involves a multiplication by a
O(log ) factor in the most favorable case.

Cost dependence on

Method N
Suzuki-Trotter splitting formulas [13] NE& — N1O
Improved Strang splitting for the electro- N?®

nic Hamiltonian [45]
Empirical scaling of random ‘real” mole- N3

cules [45]
Truncated Taylor series [29] (# gates) N8
Improved empirical scaling [27, 28, 46] N33 — N7
On-the-flyalgorithm [29] (# gates) N3
Algorithm 2: (a,b) = (3/4,0) N7
Algorithm2: (a,b) = (1/2,1/2) N6 — N7
Algorithm2:(a,b) = (1/2,1/4) NE — N©3
Algorithm2: (a, b) = (1/2, 0) N
Algorithm2: (a,b) = (1/4,1/4) N> — N33
Algorithm2: (a, b) = (1/4, 0) N>

|C| = O@m®), |D|| = O(m"),andhence n = O(m**+t/2k), ny = O(m*+%/%+),and ny = O (m"*/2k), Using
these quantities and (46) the number of queries for simulation is bounded from above by

ClmZa max{mb/Zk, ma/ZkA} + om max{ma+b/2k, mb+b/2k3}’

where ¢}, c; > 0 are constants and ¢, ¢ are fixed.
Since 0 < b < a < 1/2 the previous expression is bounded by a quantity proportional to

m max{ma+b/2k’ mh+h/2k3}'
Taking k < kpyields that the simulation cost is proportional to
m1+a+b/2k — O(N4+4“+2b/k). (65)

Recall that by using the Bravyi—Kitaev transformation [50] for the terms of (64), the number of queries of our
algorithms, modulo polylogarithmic factors, is proportional to the total gate count. We compare our results to
those from the literature in table 3 (we have summarized this table in table 1 in introduction).

Remark 13. Using the estimates a = 1/2 and a = 1/4 for local basis functions from [28, 43, 46] table 3 shows
that the number of queries of algorithm 2 scalesas N> — N7, 0 < b < a. This s consistent with the empirical
resultsin [27, 28].

Remark 14.1f a, b — 0, the cost of algorithm 2 tends to O (M), which is a lower bound to the simulation cost
since the input size is © (M*). In contrast, a naive application of an order 2k + 1 splitting formula without
partitioning the Hamiltonian would still have cost proportional to N/8+2/k,

Our algorithms take advantage of problem structure in terms of the Hamiltonian norms, without relying on
other domain-specific information or implementation-level assumptions. As part of future work, it would be
interesting to study how gate-level optimizations and other information specific to chemistry could further
improve the performance of our algorithms. Furthermore, partitioning the Hamiltonian into ;4 > 2 groups may
lead to further cost improvements in applications such as those in chemistry.

We conclude by pointing out that the advantages of our approach extend to problems beyond chemistry.
Our algorithms take advantage of the problem structure without relying on heavy assumptions, and are as
simple to implement as standard splitting formulas, but can lead to significantly lower cost. Just like splitting
formulas, our algorithms succeed deterministically and therefore they can be used as subroutines that can be
called numerous times in other quantum algorithms without this affecting the overall success probability. The
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reduced cost of our algorithms may make them suitable for applications in near-term quantum computing
devices which will have limited resources available.

We remark that it is possible to extend our algorithms to the case of time-dependent Hamiltonians
H=H(@) = ZT _ 1 H;(t), as was done for splitting formulas in [12, 16, 18].

Appendix

In this appendix we give several formal results necessary for the analysis of our algorithms. We give the full
details of algorithm 2, and give some slightly improved results for the usual application of splitting formulas.

A.1. Hamiltonians that do not affect the accuracy can be ignored

Proof of proposition 1. Using the variation-of-constants formula [62] for any vector v we have
e iHty — Aty _ if e AsBe—iH(=9y (s (t > 0),
0
which implies
le™#t — e | < ||BJlt < &/2.
Thus,

e~ — U] < [le i — e=i4|| 4 |le"i4 — U]| < e/2 4+ ¢/2=e.

A.2.Recursive Lie-Trotter formula
We show a generalization of the Lie-Trotter formula. For simplicity and to avoid technical details we assume
that H, A, and B are complex matrices.

Lemma 1 (Recursive Lie-Trotter formula). Let H,, ..., H,, be Hamiltonians with H = " | H;. Consider
A=Y HandB=Y" . H.Let

f(n’ o, ﬂ) = ((efiHlt/unmefiH,,,rt/an)u (efiHm/Ht/ﬁnmefiH,,,t/ﬂn),S)n
forn, o, B € N. Then for fixed o, 3, we have
lim f(n, a, B) = e,
n—0oQ

In particular, for = 3 = 1 the usual Lie—Trotter formula (10) is reproduced.
Moreover, we may also take limits with respect to o and (3, and in any order, i.e.,

lim f(n, a, B) = e ",

n,q, 3— 00

Proof. Fix a, 8. Then we may expand fas

f(n) a, 6) — ((efiHlt/an efiHm/t/an)m(efiH] t/an efiH,,,rt/an)

«
(efiHmrHt/ﬁn efiH,,,t/ﬁn)m(efiHm/Ht/ﬁn efiHmt/ﬁn))n’

¢

to which we may apply the Lie-Trotter formula with respect to # to yield

lim f(n, a, B) = exp( (—iHt/a— ... —iHyt/a) + ... + (—iHt/ o ...—iH,t/a)
n—oo
«
+ (—iHpy it/ B— .. —iHut/B) + .. + (—iHpy it/ B ...—1H,t/3) )
B
— o 0(Ht/0)~ .. ~a(Hyt/a)~BHyr it /)~ .. ~B(Hut/B) — o—iHl

This expression holds for arbitrary but fixed o and 3. Now suppose we take & — 00 while keeping n and 3 fixed.
Then we have
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lim f(n, a, ,6) — (efiAt/n(e—iHmrHt/ﬁnmefiH,,,z/ﬂn)ﬁ)n.

Taking now # — oo yields
lim lim f(n, a, B) = e 1",
n—o0 ax—00
All possible orderings of the limits with 1, o, 8 — oo follow similarly. O

A.3.Error of the Strang splitting formula
Suzuki [39] provides error bounds for the Trotter formula, the Strang formula, and other high-order splitting
formulas. We will build on the analysis of [45] to derive a useful bound for the error of the Strang splitting
formula. We note that the original analysis of [45] contains a small error, which has been corrected in [34,
appendix A]. We also use results from [39].

Throughout the paper we make use of the inequality (e.g., [39, lemma 1])

la" = b"|| < nlla — bl|(max([lall, [[b]D)"~, (66)

for a, b elements of a Banach operator algebraand n € N. Also recall the identity for the commutator operator
X, Y1|| < 2||X]|||Y], where [X, Y] := XY — YX.

Lemma 2 (Strang splitting formula error). Let n € N, t > 0, and At:=t/n. Let A, B be Hermitian matrices
and H = A + B. Then

. 1 2
le = (S2(4, B, A" < A, Bl A+ BlllrAr < Z[A[IB]lICll:Ar?,

where ||| := max{||Al|, ||B]|}.
Proof.Let H(x) := (1 — x)AAt + BAt, 0

< x < 1. From from [45, appendix B] we have
I[TAAL, H(0)l, H@)]| < ([[[A, Bl, All| + [|[[A, Bl, Bl[p At

Extending the analysis of [45, appendix B], we get

dx

1 s — 52
f [[AAL, H(x)], H()] ds
0

||e—i(A+B)At _ efiAAt/zefiBAte*iAAt/zH < fl ‘
2

15_52

1
ds fo I[AAL, H(x)], H(x)]|| dx

0
< %(II[[A, BI, Alll + [|[[A, BI, B[ Ar

1
S @A IBI + 4ANIIBI%) Ar.

For ||C|| = max{||A|| ||B]|} this yields

||e—i(A+B)At _ e—iAAt/Ze—iBAte—iAAt/ZH < %HA””BHHC‘HAIQ

Finally,

||(e—i(A+B)At)t/Az _ Sz (A, B, At)t/At || < (t/At) ||e—i(A+B)At _ e—iAAt/zefiBAze—iAAtﬂH ,
which follows from (66) with unitary a and b. O
A.4. Algorithm 2 details

We give the details of algorithm 2, which generalizes algorithm 1 by first applying a splitting formula of order
2k + 1;see figure 1.

We apply the results of [ 13], which achieves improved bounds to the simulation error and cost by rescaling
the Hamiltonians to have norm at most 1. Note that such rescalings are equivalent to rescalings of the simulation
time. Indeed, for Hamiltonians A,B,H = A + B,andZ > 0 we have
UH/C, t) = e IH/Ot = =i/ — U(H, t/¢)and Sy (A/€, B/C, t) = Sar(A, B, t/¢), where the
definition of Sy; is given in (12).

Proof of proposition 3. Recall the preliminary analysis given in section 3.4. Consider the Hamiltonian H as in
(2) and (3), partitioned into two groups H = A + B = (H, + ...+ H,y) + (Hy/41 + ... + Hy,,). We have
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U= e iHt — o—iA+B)t _ (efi(ﬁ+ﬁ)/M>M”c“t — (e-iA+BM|ChyMIC]

for||C|| = max{||Al|, ||B||},and the quantity M > 1issufficiently large and will be defined shortly. Also define
ID|| == min{]||A]|, ||B||}- Thus the (algorithm first-step) time slice size is (M|| C||)~!, and the number of (first-
step) intervals is [M||C||]. Let

no = [ M]|C]J¢], & = M]|C[[t — [M]|C]]t]
denote the integer and fractional parts of M||C||t = ny + 6, respectively.

Recall it is equivalent to simulate H /||C|| for time #||C]|. Let

_ A B 1\W'.(4A B 5§
U = (SZk(—> T _)) SZk(—) ] _]~ (67)
Il Il M Il fIcl M
Unwinding the recurrence (12) defining S, for two Hamiltonians X and Yand 7 € Ryields[12, 13]
K
SZk(X: Y’ T) = H SZ(X) Y) ZfT))
£=1

where K = 5° = 'and each z, is defined according to the recursive scheme of (12),# = 1, ..., K. In particular,
each z, is given as product of k — 1 factorsas z, = [[,. L b Il 5, 9 where the products are over the index sets

I, 1, defined by traversing the path of the recursion tree corresponding to £, and S K_lz¢l = 1;see[13, section
3] for details. Recall that in section 3.2 we have defined the quantities p, = (4 — 4'/@~Dyyand
q, =1 — 4p,,fork € N.

—i@/[IChr

Let U7 () and U (7) be approximations to e {4/ I€7 and e , respectively, where A = A/||Cl||and

B = B/||C||. We approximate S,(A/||C||, B/||C||, T) by
SA/|Cl, B/ICl, 7) = Ua(r/2) Us(r) Ua(r/2),

and this yields

K

K
Sw/||Cll, B/|ICll, T = [T SaAa/|iCll, B/ICIl, zem) = [T Ualzer/2) Us(zem) Un(zer/2).
=1 =1

Hence, applying the above to (67) we get
U = Sw(A/|Cll, B/|[CII, 1/M))"Su(A/||Cl|, B/|CI|, §/M)

K no K
=[H §2(A/||C||aB/|C||’Z£/M)) 1 S.Aa/lCl, B/|Cll, 28/ M)
=1 =1
KiMclie N N
= [I Ouir/2M)Us(zer /M) Us(zpr /2M), (68)
=1

where in the last equation we have re-indexed the product so that z,» = z(’ med x)+1)forl < £/ < ngK,and
Zp1 = Z((¢' mod K)+1)0 for ngK < £/ < (ng + 1)K. The overall term ordering and time interval sizes are easily
computable from (12) to (68). Thus U isan ordered product of (3K[M||C||#])-many applications of [,\]14 and U
(each applied for differing simulation times).

We now turn to the algorithm second step splitting formulas, i.e., the ones approximating e
e IB/1CD7 for 7 € R. We apply Suzuki’s high-order splitting formulas, with different orders in principle.

Once more simulating A = A/||C|| for time 7 is equivalent to simulating A for time 7/||C||, and this is
further equivalent to simulating A /||H, || for time 7||H; || /|| C||- Thus we define

~i4/ICID7 and

milcl  H .

ey N (1 <j<m)

a H/|C| H; .
- < m.
T/ TCTT - THery (™ <JSm)
Thus we obtain

Ui (zs /2M) = Sop,(Hyy .oy Hpry 1/ MUz 2DCLIRI/ICDIS, (Hy, .., Hyry 64 /Ma), (69)
Us(z¢ /M) = Saty(Hrst oo Moy 1/ M) Mol el MICIS e (s, oy Hons 65/ M), (70)

where 6, == My || Hy||lz¢|/(2M]|Cl)) — [ My ||H [|z¢1/(2M||C]}) Jand 85 = M || Hywr1]| |22/ (M]|Cl|) —

| M3 ||Hyw 11l 122l / (M||C)) |, and My, Mp > 1 will be defined shortly. The quantities [ My ||H, |||z-] /M| C||) ]
and [Mg || Hp,41||1221/ (M| C]|) ] give the number of subintervals used to further subdivide intervals of length
z¢ /2My and z,/ Mp, respectively. The reader may wish to recall the text after (32) and (33) that deals with the
calculation of the number of subintervals and their lengths.
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Errorand cost.  Using (67) and (68), we bound the overall error by
ju- Bl < U= 0 + 0 - 0.

The first term in the right-hand side corresponds to the error of a splitting formula at the first step of the
algorithm, where we pretend that exponentials e 47, e 77, 7 € R are given to us exactly, and the second term
corresponds to the error in the second step of the algorithm, i.e., the error introduced by splitting formulas
approximating e “Tande ',

As explained in section 3.4, to guarantee |[U — U|| < ¢/2 we set the quantity M as in (27), which gives

1/2k k—1
v s - 21 2
€ 3\3

Toapply[13], theorem 1 for H = A + Bandaccuracy ¢/2, the condition of that theorem becomes

16et||D|| > e, (71)
which implies M > 1. Hence, the number of Sy, comprising Uin (67)isat most

3. 51 MIClel,

where [ M||C||#] gives the number of time intervals at the first step. The interesting case is M||C||t > 1, for which
it suffices to assume ||C||t > 1 (otherwise, as explained in the analysis of algorithm 1, we would be deahng with
an easy problem). Then the above quantity may be further bounded by 3 - 5*~12M||C||t. Let N4 and N be upper

bounds to the number of exponentials comprising Ui(zs / 2M) and U (z,/M), respectively, for any £. Then the
resulting total number of exponentials in algorithm 2 (in U) is

N < 2Ny + Np)5k-12M]|C||t. (72)

In order to obtain estimates to N4 and N we turn to the second-step error, where we require
|U — U| < &/2.Wehave

1T — Ull= || Sx(A/[ICILB/IIC 1/ M)™ Sa(A/||CI,B/ ([ Cl,6/ M)
— Su(A/[|C]L.B/|ICII,1/M)™ Sa(A/||C,B/||CI1,6 /M) ||
< no[Sak(A, B, 1/M) — S3(A, B, 1/M)|| + [|Sik(A, B, §/M) — Sy(A, B, §/M)||.  (73)

Observe

1S2k(A, B, 1/M) — S,(A, B, 1/M)||=

K
[T S:(A, B, ze/M) — H Ui (z¢ /2M) Uz /M) Uh (24 /2M) H

et /=1
K ~ K . ~
Z —1Azf/2M _ U:LX(ZK/ZM)H + Z”e—lBZf/M _ UB(Zf/M)”

=1 =1

The 174 and U are given by splitting formulas over time intervals of size z, /2M, z, /M, z,6/2M and
2,0/ M, which vary with the z,. Since § < 1 webound the second term in (73) to get

|10 = Ull < (no + 6)(22||e W Qe /M) + 3 e %(zf/mn]. (74)
£=1 /=1
Thus, sufficient conditions for | U — U|| < e/2are
1§E£K\|e*mzf/2M — Uize/2M)|| < S0me i HE 8M||C8||t5k*1’
Sup, Vet = Batee MO < G = o

We next explain how to select the subintervals for applying U, and Us, keeping in mind that we eventually
select the same values of My and My in all resulting time intervals due the upper bounds (76) and (78) below.
Note that selecting M4 or M to be larger than necessary can only reduce the simulation error. Thus, for
convenience, we select M4 and Mp uniformly and large enough so that the resulting worst-case errors are
sufficiently small.

In particular, consider U, (z, /2M) which approximately simulates A/||C|| for tlme 17+ This amount of

time we further subdivide in My (z, /2M) slices. From [13], the error will be at most ifusing (14) we

8M H C| tK
set
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3

u ( 2z ) (4em’(|zf| /2M)||H | /||C]| )l/ o 4em’(5 )’wl (16eK|z,f|m’t||H2|| )Vm 4em’(5 )kﬂ
Al — = pry .
3 3

2M (e/8M]|C]|tK) 3 e 3

Importantly, observe that the factors of M and || C|| have canceled. Using the fact that [12, appendix A]

31 3K
we have
5\k-1 4 {5\
(3) <ra<i(3): 7
Therefore
4 14| I/ZkA4 / ka—1+k/2ks
Ma e /20M) < [S4 gL ) T dem (5) = M, (76)
5 € 3 \3
for all #. Hence, we will split every time interval of size z, /2M, £ = 1, ..., K into M, subintervals.

To bound the cost of each Uy (z,/2M), we apply [13, theorem 2]. The theorem assumes

lzel NI el < & : / .
dem ( oY ) C > o T O equivalently 16em’||H, ||tK|zs| > &, where again the M and || C|| factors have

canceled. Since in the statement of the proposition we have assumed that

16em’||H ||t > &, (77)

we an apply [13, theorem 2]. Hence, the number of exponentials for each Ui(ze/2M), € = 1, ..., K, isat most

@m’ — 1)5k—1 MA—”Hlllm < 2m/5ka—1 M, ||Fhl| 2k =N
ICll 2M M || 3

Note that the argument of this ceiling function may be greater than or less than one, depending on the problem
instance and algorithm parameters. In the latter case, the time intervals of length z, /2M do not require any
subdivision at all.

We now consider ﬁg (z¢ /M) which approximately simulates B/||C|| for time z,/M, and proceed similarly.

e

to give error at most W we select M from (14) to give
1/2k -
My(zy /M) = de(m — m")(|z¢| /M) ||Hu 12| /]| C| " de(m — m') (E)kg 1
(e/4M||C||tK) 3 3
[ 16eKlz/|(m — m')t||Hp 12| V%5 4o (m — m') (E)kﬂl
13 3 3
— m)t||H,y 1/2ks ! ks—1+k/2ks
€

Observe that the factors of M and || C|| have again canceled, and Mp is of the same form as M.
To apply [13, theorem 2] to bound the cost of any ﬁg (z¢ / M), we require
INAEZAR Y By € . o / . . .
4e(m — m )( m ) ici 2 o T equivalently, 16e(m — m’)||Hyy42||tK|zs| > €, whichis valid
because we have assumed that

16e(m — m") ||Hyri ot > €. (79)

The number of exponentials for each ij[; (z¢ / M) is at most

Q(m — m') — 1)5@{]\@@@—' <2(m — m/)5k31[%Mﬁw = N,
Icl M M |c| 3

Thus, from (72) we have that the total cost (total number of exponentials) is at most
N < 2M||C|[t5*" 12N,y + Np)

< 2M||C||t 5k1(4m’5kA1[% 1 | %—‘ +2(m — m’)skBl[%Mﬁ—l}

M |C| 3¢ M C 3

Letting

16¢t||D|| /% 8e (5 \*
i =no+ 6 =M||C|t = ||C||¢ 16ed|D]| —e(—),
5 5\3
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which is equal to the lower bound for n as it appears in the statement of the proposition, and
. 2k . 4k
fig = MAHHH’«‘?, fig :MBHHm’+1Ht3_k’
the cost bound becomes (see (41))
N < 8m/5ktha=2p [”TA] + 4(m — m/)5k k=2 ﬁ[”—f]
fi i

Again applying the inequality x[y/x] < max{x, 2y} forx,y > 0, we have
N < 8m/5Ktka=2max{#1, 274} + 4(m — m')55T*s=2max {7, 27iz)}.
Finally, we use the inequality
k1/2K (5 /3)k/2K'k /3K < (35/16)(3/5)F for k, k¥ € N (80)

to define simpler quantities n, and ngas

2k

_ 6de , m't|Hy || )/ 16em’ (5 a1 +k/ 2k g
2 = 2, 3 = e[S54 (s .

Tt H- 1/2ky ka—k
< m/H1||t(6;£m72”) 76(%) = my(k, ka),
€

and

~ 4k 6de  (m — m)t|H,y» V/2ks 350 (m — m!) {5\ 15/ 2ks |
anZZHHmHLlHtMB? - IHm/Ht(?k ([ Ho-+2] ( 3 ) 2 :

4, — mt|H,, 1/2ks kp—k
<(m— m')IIHm/+1IIt(65—e(m mi” m”) 148(%) = (b k).

e

Applying these estimates, the cost bound becomes
N < 8m/55Tka=2max{ii, my} + 4(m — m’) 5kt —2max{#, ng). (81)
Clearly this inequality is valid by replacing # by any nsuch that n > 7. O
Proof of theorem 2 As the analysis is similar to that of proposition 3, we give only the important parts. Recall the
preliminary analysis given in section 3.4.
Consider a Hamiltonian asin (2) and (3), partitioned into pt groups H = A; + ... + A, asinsection 3.4,
labeled such that [|A; || > ||A;|| = ... > ||A, | We approximate U = e~ " with U givenin (23),1.e.,

Nk,p Nk,u

ﬁ = (§2k(Al> ceey A/" t/l’l))n = (H ﬁ;ﬁ(t{/”)] > ﬂf € {Ab EEES) A/l,}: Z tp = Mt'
=1 =1

For the first-step error to be at most € /2, we set n = M||A; ||t with M given asin (27), i.e.,
() a5
€ 3 \3

where in the statement of the theorem we have assumed pt|A;|| > e. Note that we do notrequire n € N;
however, as evident from (72) and (74), this assumption does not affect our analysis.
From (28) the second-step error is at most €,/2 if the error of each subroutine satisfies

Cidts I ~ ;
le=ite/n — U, (ty/n)|| < 4055 n

>

since Ni,, = Qu — 1)5%=1. Thus for eachj = 1,..., pweselect

1/2k; B
M (z_f)_ 4em;(|z¢| /2M) || Hjo || /|| A1 | / ’4emj(g)’<1 .
Ai\om (e/4uM||A; |[tK) 3 |3
| 8euKlzzlm;t||Hj || 1/2k; 4em].(i)k,-1
g 3 3
32¢ , um;t||Hjpo || /2% dem; (5 kj—1+k/2k;
<=k E M,
> € 3 \3 j
forallZ = 1, ..., K, where in the statement of the theorem we have assumed :“mjt”H(j,z)H Se = 1o
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Hence, the number of exponentials in ﬁAj (z¢ / 2M) is at most

1Hnll |zl M, [[Henll 2k
@m; — sk~ Y M, — 220 < omski- | L2 R 2 = Ny
: YA M | T | M Al R

Recalling (29), from (72) we have that the total cost (overall number of exponentials) is at most

My, [|Hj,n | 2k
M Al 3

1 1
N <2n5K7 1% 72Ny, < 2581 4mj5kfl[
j=1 j=1
Iz n; I
<8) mj5k+ki2n[—]—| <8) m; 55 k—2max{n, 2n;},
j=1 n i=1
where nj:= M, ||Hj 1|t 2k/3%.
We again apply (80) to give the simpler quantities

A N2k ka—1+k/2k
2k 32¢  um;t||Hj o)l ]16em’(5)" i k
2n; = 2My, | Hiin llt== = ||H¢jn|lt| ==k ’ 2 x
j A1 HGw | v [Hen I ( 5 . P 7
1/2k; ki—k
32e pmjt|Hiop I}/ (59
<mj||H<j,1>||f( s | 3] = rake k),

which gives the cost bound (50), i.e.,

I
N <8 55hi=2m;max{n(k), na,(k, k;)}
-1

: ’I’](k, kl) eey le). (82)

We remark that setting k = 1 above reproduces the results of theorem 1 up to small constants.
A.5. Proofof (61)

Proof. Consider all problem parameters to be fixed except m, m’. Observe that (46) contains two maximum
functions, and hence we have four cases to consider with respect to the relative magnitudes of n(k), n4(k, k), and
np(k, kg). Recall n(k) is given in (58). Here we estimate the maximum function by the sum of its arguments to get
n(k, ka, kg) < 8m'555a72 (ny (k, ka) + n(k)) + 4(m — m')55 k=2 (ng(k, kg) + n(k))

< 8m!5ktha=2 py, (k, ko) + 4(m — m')5KThs=2 pp(k, kp)

+ (8m/5ktka=2 4 4(m — m')5KtRs—2)n (k).
Let * denote the minimum of (46) with respect to k, k, k. Let k™9, kIE\ma"), kgma” be defined as in proposition
4 under the assumptions of proposition 3. Using n* < 7 (k(Mm®9, k™) [(ma9) this gives

N<p*< 8! 5K ™Yk —2 1 (kM9 k[&max)) + 4(m — m') A4 ) 2 np (kmax), klgmaX))
T (85K TR =2 4 g — ) 5K K2y gy (e(max)y

_ 3k(m“")o(m/2||H1||t) ) 3 In 2 In(*Em’t| Hy || /)

1

+ 3K O0(m — m!) | Hyy[[1) - €230 5 InCEGnmel e ol /2

G 4 5 O((m — 'y || - e (TR SO T,

where we have used asymptotic notation in the equality above and in the rest of this section to focus on how the
problem parameters affect the number of queries. The quantities under the square roots are derived as in [13].
Next observe that from (57) we have m’||H, || = (m — m")||H,v11|| = (m — m')||H,yr 42| and

(m — m")||[Hy41|| = O(n!||Hy|). Using the bound a¥? < Ja’*+! fora,b > 1wehave

max{3K™, 5K 5™} < 51 Hogs 16em RIS <[5 (16em/t| Hy || /)02,

which gives

N< ,'7* _ O((m/HHZHt/E)O.Z) . O(mm’||H1||t) X eZJ%ln%ln(16em’t\|HzH/£).

Hence, using N}, as defined in (18) we have

N < Ui O((m'||H||t/£)*%) o(m’) e2|31n % Ini6em’ ]| Hy]l /o)
= m 9] . . —_— . = .
Ny h Ny m 250 % In(emt|[Hy /<)
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Observe that fora < b, the function e*v*~v* — 0 as x — c0. Thus, assuming m’ = O (m°/°), we have

*

N <1 o (83)
Nprev Nprev m—0o0

O
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