8,223 research outputs found

    Holographic Renormalization of general dilaton-axion gravity

    Get PDF
    We consider a very general dilaton-axion system coupled to Einstein-Hilbert gravity in arbitrary dimension and we carry out holographic renormalization for any dimension up to and including five dimensions. This is achieved by developing a new systematic algorithm for iteratively solving the radial Hamilton-Jacobi equation in a derivative expansion. The boundary term derived is valid not only for asymptotically AdS backgrounds, but also for more general asymptotics, including non-conformal branes and Improved Holographic QCD. In the second half of the paper, we apply the general result to Improved Holographic QCD with arbitrary dilaton potential. In particular, we derive the generalized Fefferman-Graham asymptotic expansions and provide a proof of the holographic Ward identities.Comment: 42 pages. v2: two references added. Version published in JHEP. v3: fixed minor typos in eqs. (1.6), (2.3), (3.20), (A.3), (B.8), (B.12) and (B.22

    Anatomy of bubbling solutions

    Full text link
    We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.Comment: 67 pages, 6 figures; v2: typos corrected, refs added; v3: expanded explanations, more typos correcte

    Settling Some Open Problems on 2-Player Symmetric Nash Equilibria

    Full text link
    Over the years, researchers have studied the complexity of several decision versions of Nash equilibrium in (symmetric) two-player games (bimatrix games). To the best of our knowledge, the last remaining open problem of this sort is the following; it was stated by Papadimitriou in 2007: find a non-symmetric Nash equilibrium (NE) in a symmetric game. We show that this problem is NP-complete and the problem of counting the number of non-symmetric NE in a symmetric game is #P-complete. In 2005, Kannan and Theobald defined the "rank of a bimatrix game" represented by matrices (A, B) to be rank(A+B) and asked whether a NE can be computed in rank 1 games in polynomial time. Observe that the rank 0 case is precisely the zero sum case, for which a polynomial time algorithm follows from von Neumann's reduction of such games to linear programming. In 2011, Adsul et. al. obtained an algorithm for rank 1 games; however, it does not solve the case of symmetric rank 1 games. We resolve this problem

    Reflective Relational Machines

    Get PDF
    AbstractWe propose a model of database programming withreflection(dynamic generation of queries within the host programming language), called thereflective relational machine, and characterize the power of this machine in terms of known complexity classes. In particular, the polynomial time restriction of the reflective relational machine is shown to express PSPACE, and to correspond precisely to uniform circuits of polynomial depth and exponential size. This provides an alternative, logic based formulation of the uniform circuit model, which may be more convenient for problems naturally formulated in logic terms, and establishes that reflection allows for more “intense” parallelism, which is not attainable otherwise (unless P=PSPACE). We also explore the power of the reflective relational machine subject to restrictions on the number of variables used, emphasizing the case of sublinear bounds

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    An Epistemic Perspective on Consistency of Concurrent Computations

    Full text link
    Consistency properties of concurrent computations, e.g., sequential consistency, linearizability, or eventual consistency, are essential for devising correct concurrent algorithms. In this paper, we present a logical formalization of such consistency properties that is based on a standard logic of knowledge. Our formalization provides a declarative perspective on what is imposed by consistency requirements and provides some interesting unifying insight on differently looking properties

    Qualitative Analysis of Partially-observable Markov Decision Processes

    Get PDF
    We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with omega-regular objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider the qualitative analysis problem: given a POMDP with an omega-regular objective, whether there is an observation-based strategy to achieve the objective with probability~1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis of POMDP s with parity objectives (a canonical form to express omega-regular objectives) and its subclasses. Our contribution consists in establishing several upper and lower bounds that were not known in literature. Second, we present optimal bounds (matching upper and lower bounds) on the memory required by pure and randomized observation-based strategies for the qualitative analysis of POMDP s with parity objectives and its subclasses
    corecore