20 research outputs found

    Extracellular vesicles in the urine: markers and mediators of tissue damage and regeneration

    Get PDF
    As in several body fluids, urine is a rich reservoir of extracellular vesicles (EVs) directly originating from cells facing the urinary lumen, including differentiated tubular cells, progenitor cells and infiltrating inflammatory cells. Several markers of glomerular and tubular damage, such as WT-1, ATF3 and NGAL, as well as of renal regeneration, such as CD133, have been identified representing an incredible source of information for diagnostic purposes. In addition, urinary extracellular vesicles (uEVs) appear to be involved in the cell-to-cell communication along the nephron, although this aspect needs further elucidation. Finally, uEVs emerge as potential amplifying or limiting factors in renal damage. Vesicles from injured cells may favour fibrosis and disease progression whereas those from cells with regenerative potential appear to promote cell survival. Here, we will discuss the most recent findings of the literature, on the light of the role of EVs in diagnosis and therapy for damage and repair of the renal tissue

    Coincubation as miR-Loading Strategy to Improve the Anti-Tumor Effect of Stem Cell-Derived EVs

    Get PDF
    Extracellular vesicles are considered a novel therapeutic tool, due to their ability to transfer their cargoes to target cells. Different strategies to directly load extracellular vesicles with RNA species have been proposed. Electroporation has been used for the loading of non-active vesicles; however, the engineering of vesicles already carrying a therapeutically active cargo is still under investigation. Here, we set up a coincubation method to increase the anti-tumor effect of extracellular vesicles isolated from human liver stem cells (HLSC-EVs). Using the coincubation protocol, vesicles were loaded with the anti-tumor miRNA-145, and their effect was evaluated on renal cancer stem cell invasion. Loaded HLSC-EVs maintained their integrity and miR transfer ability. Loaded miR-145, but not miR-145 alone, was protected by RNAse digestion, possibly due to its binding to RNA-binding proteins on HLSC-EV surface, such as Annexin A2. Moreover, miR-145 coincubated HLSC-EVs were more effective in inhibiting the invasive properties of cancer stem cells, in comparison to naïve vesicles. The protocol reported here exploits a well described property of extracellular vesicles to bind nucleic acids on their surface and protect them from degradation, in order to obtain an effective miRNA loading, thus increasing the activity of therapeutically active naïve extracellular vesicles

    Role of CD133 Molecule in Wnt Response and Renal Repair

    Get PDF
    Renal repair after injury is dependent on clonal expansion of proliferation‐competent cells. In the human kidney, the expression of CD133 characterizes a population of resident scattered cells with resistance to damage and ability to proliferate. However, the biological function of the CD133 molecule is unknown. By RNA sequencing, we found that cells undergoing cisplatin damage lost the CD133 signature and acquired metanephric mesenchymal and regenerative genes such as SNAIL1, KLF4, SOX9, and WNT3. CD133 was reacquired in the recovery phase. In CD133‐Kd cells, lack of CD133 limited cell proliferation after injury and was specifically correlated with deregulation of Wnt signaling and E‐cadherin pathway. By immunoprecipitation, CD133 appeared to form a complex with E‐cadherin and ÎČ‐catenin. In parallel, CD133‐Kd cells showed lower ÎČ‐catenin levels in basal condition and after Wnt pathway activation and reduced TCF/LEF promoter activation in respect to CD133+ cells. Finally, the lack of CD133 impaired generation of nephrospheres while favoring senescence. These data indicate that CD133 may act as a permissive factor for ÎČ‐catenin signaling, preventing its degradation in the cytoplasm. Therefore, CD133 itself appears to play a functional role in renal tubular repair through maintenance of proliferative response and control of senescence

    Human Liver Stem Cell-Derived Extracellular Vesicles Prevent Aristolochic Acid-Induced Kidney Fibrosis

    Get PDF
    With limited therapeutic intervention in preventing the progression to end-stage renal disease, chronic kidney disease (CKD) remains a global health-care burden. Aristolochic acid (AA) induced nephropathy is a model of CKD characterised by inflammation, tubular injury, and interstitial fibrosis. Human liver stem cell-derived extracellular vesicles (HLSC-EVs) have been reported to exhibit therapeutic properties in various disease models including acute kidney injury. In the present study, we aimed to investigate the effects of HLSC-EVs on tubular regeneration and interstitial fibrosis in an AA-induced mouse model of CKD. NSG mice were injected with HLSC-EVs 3 days after administering AA on a weekly basis for 4 weeks. Mice injected with AA significantly lost weight over the 4-week period. Deterioration in kidney function was also observed. Histology was performed to evaluate tubular necrosis, interstitial fibrosis, as well as infiltration of inflammatory cells/fibroblasts. Kidneys were also subjected to gene array analyses to evaluate regulation of microRNAs (miRNAs) and pro-fibrotic genes. The effect of HLSC-EVs was also tested in vitro to assess pro-fibrotic gene regulation in fibroblasts cocultured with AA pretreated tubular epithelial cells. Histological analyses showed that treatment with HLSC-EVs significantly reduced tubular necrosis, interstitial fibrosis, infiltration of CD45 cells and fibroblasts, which were all elevated during AA induced injury. At a molecular level, HLSC-EVs significantly inhibited the upregulation of the pro-fibrotic genes α-Sma, Tgfb1, and Col1a1 in vivo and in vitro. Fibrosis gene array analyses revealed an upregulation of 35 pro-fibrotic genes in AA injured mice. Treatment with HLSC-EVs downregulated 14 pro-fibrotic genes in total, out of which, 5 were upregulated in mice injured with AA. Analyses of the total mouse miRnome identified several miRNAs involved in the regulation of fibrotic pathways, which were found to be modulated post-treatment with HLSC-EVs. These results indicate that HLSC-EVs play a regenerative role in CKD possibly through the regulation of genes and miRNAs that are activated during the progression of the disease

    Human Urine as a Noninvasive Source of Kidney Cells

    Get PDF
    Urine represents an unlimited source of patient-specific kidney cells that can be harvested noninvasively. Urine derived podocytes and proximal tubule cells have been used to study disease mechanisms and to screen for novel drug therapies in a variety of human kidney disorders. The urinary kidney stem/progenitor cells and extracellular vesicles, instead, might be promising for therapeutic treatments of kidney injury. The greatest advantages of urine as a source of viable cells are the easy collection and less complicated ethical issues. However, extensive characterization and in vivo studies still have to be performed before the clinical use of urinederived kidney progenitors

    Role of CD133 Molecule in Wnt Response and Renal Repair

    No full text
    Renal repair after injury is dependent on clonal expansion of proliferation‐competent cells. In the human kidney, the expression of CD133 characterizes a population of resident scattered cells with resistance to damage and ability to proliferate. However, the biological function of the CD133 molecule is unknown. By RNA sequencing, we found that cells undergoing cisplatin damage lost the CD133 signature and acquired metanephric mesenchymal and regenerative genes such as SNAIL1, KLF4, SOX9, and WNT3. CD133 was reacquired in the recovery phase. In CD133‐Kd cells, lack of CD133 limited cell proliferation after injury and was specifically correlated with deregulation of Wnt signaling and E‐cadherin pathway. By immunoprecipitation, CD133 appeared to form a complex with E‐cadherin and ÎČ‐catenin. In parallel, CD133‐Kd cells showed lower ÎČ‐catenin levels in basal condition and after Wnt pathway activation and reduced TCF/LEF promoter activation in respect to CD133+ cells. Finally, the lack of CD133 impaired generation of nephrospheres while favoring senescence. These data indicate that CD133 may act as a permissive factor for ÎČ‐catenin signaling, preventing its degradation in the cytoplasm. Therefore, CD133 itself appears to play a functional role in renal tubular repair through maintenance of proliferative response and control of senescence

    Human Urine as a Noninvasive Source of Kidney Cells

    Get PDF
    Urine represents an unlimited source of patient-specific kidney cells that can be harvested noninvasively. Urine derived podocytes and proximal tubule cells have been used to study disease mechanisms and to screen for novel drug therapies in a variety of human kidney disorders. The urinary kidney stem/progenitor cells and extracellular vesicles, instead, might be promising for therapeutic treatments of kidney injury. The greatest advantages of urine as a source of viable cells are the easy collection and less complicated ethical issues. However, extensive characterization and in vivo studies still have to be performed before the clinical use of urine-derived kidney progenitors

    Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer’s Disease

    No full text
    Various studies have been conducted, exploring the genetic susceptibility of Alzheimer’s disease (AD). Adenosine receptor subtype A2a (ADORA2A) and cytochrome P450 1A2 (CYP1A2) are implicated in pathways such as oxidative stress and caffeine metabolism, which are associated with AD. The aim of this study was to explore for any potential association between the ADORA2A rs5760423 and the CYP1A2 rs762551 genetic variants and AD. A case–control study was performed with a total of 654 subjects (327 healthy controls and 327 patients with AD). Five genetic models were assumed. We also examined the allele–allele combination of both variants. The value of 0.05 was considered as the statistical significance threshold. A statistically significant association was found between ADORA2A rs5760423 and AD, as the “T” allele was associated with increased AD risk in recessive (OR = 1.51 (1.03–2.21)) and log-additive (OR = 1.30 (1.04–1.62)) genetic modes. In the codominant model, the TT genotype was more prevalent compared to the GG genotype (OR = 1.71 (1.09–2.66)). The statistical significance was maintained after adjustment for sex. No association between CYP1A2 rs762551 or allele–allele combination and AD was detected. We provide preliminary indication for a possible association between the ADORA2A rs5760423 genetic polymorphism and AD
    corecore