19 research outputs found

    IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Sénégal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific <it>Anopheles </it>gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to <it>Anopheles </it>bites. The aim of this study was to use this biomarker to evaluate the human exposure to <it>Anopheles </it>mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where <it>Anopheles </it>biting rates and malaria transmission are supposed to be low.</p> <p>Methods</p> <p>One cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district.</p> <p>Results</p> <p>Considerable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to <it>Anopheles gambiae </it>bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and <it>Anopheles </it>mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to <it>Anopheles </it>bites between different exposure groups of districts.</p> <p>Conclusions</p> <p>Specific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to <it>Anopheles </it>bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.</p

    Identification and Validation of Loa Loa Microfilaria-Specific Biomarkers: A Rational Design Approach Using Proteomics and Novel Immunoassays

    No full text
    UNLABELLED: Immunoassays are currently needed to quantify Loa loa microfilariae (mf). To address this need, we have conducted proteomic and bioinformatic analyses of proteins present in the urine of a Loa mf-infected patient and used this information to identify putative biomarkers produced by L. loa mf. In total, 70 of the 15,444 described putative L. loa proteins were identified. Of these 70, 18 were L. loa mf specific, and 2 of these 18 (LOAG_16297 and LOAG_17808) were biologically immunogenic. We developed novel reverse luciferase immunoprecipitation system (LIPS) immunoassays to quantify these 2 proteins in individual plasma samples. Levels of these 2 proteins in microfilaremic L. loa-infected patients were positively correlated to mf densities in the corresponding blood samples (r = 0.71 and P \u3c 0.0001 for LOAG_16297 and r = 0.61 and P = 0.0002 for LOAG_17808). For LOAG_16297, the levels in plasma were significantly higher in Loa-infected (geometric mean [GM], 0.045 ”g/ml) than in uninfected (P \u3c 0.0001), Wuchereria bancrofti-infected (P = 0.0005), and Onchocerca volvulus-infected (P \u3c 0.0001) individuals, whereas for LOAG_17808 protein, they were not significantly different between Loa-infected (GM, 0.123 ”g/ml) and uninfected (P = 0.06) and W. bancrofti-infected (P = 0.32) individuals. Moreover, only LOAG_16297 showed clear discriminative ability between L. loa and the other potentially coendemic filariae. Indeed, the specificity of the LOAG_16297 reverse LIPS assay was 96% (with a sensitivity of 77%). Thus, LOAG_16297 is a very promising biomarker that will be exploited in a quantitative point-of-care immunoassay for determination of L. loa mf densities. IMPORTANCE: Loa loa, the causative agent of loiasis, is a parasitic nematode transmitted to humans by the tabanid Chrysops fly. Some individuals infected with L. loa microfilariae (mf) in high densities are known to experience post-ivermectin severe adverse events (SAEs [encephalopathy, coma, or death]). Thus, ivermectin-based mass drug administration (MDA) programs for onchocerciasis and for lymphatic filariasis control have been interrupted in parts of Africa where these filarial infections coexist with L. loa. To allow for implementation of MDA for onchocerciasis and lymphatic filariasis, tools that can accurately identify people at risk of developing post-ivermectin SAEs are needed. Our study, using host-based proteomics in combination with novel immunoassays, identified a single Loa-specific antigen (LOAG_16297) that can be used as a biomarker for the prediction of L. loa mf levels in the blood of infected patients. Therefore, the use of such biomarker could be important in the point-of-care assessment of L. loa mf densities

    Identification and Validation of Loa loa Microfilaria-Specific Biomarkers: a Rational Design Approach Using Proteomics and Novel Immunoassays

    No full text
    Immunoassays are currently needed to quantify Loa loa microfilariae (mf). To address this need, we have conducted proteomic and bioinformatic analyses of proteins present in the urine of a Loa mf-infected patient and used this information to identify putative biomarkers produced by L. loa mf. In total, 70 of the 15,444 described putative L. loa proteins were identified. Of these 70, 18 were L. loa mf specific, and 2 of these 18 (LOAG_16297 and LOAG_17808) were biologically immunogenic. We developed novel reverse luciferase immunoprecipitation system (LIPS) immunoassays to quantify these 2 proteins in individual plasma samples. Levels of these 2 proteins in microfilaremic L. loa-infected patients were positively correlated to mf densities in the corresponding blood samples (r = 0.71 and P < 0.0001 for LOAG_16297 and r = 0.61 and P = 0.0002 for LOAG_17808). For LOAG_16297, the levels in plasma were significantly higher in Loa-infected (geometric mean [GM], 0.045 ”g/ml) than in uninfected (P < 0.0001), Wuchereria bancrofti-infected (P = 0.0005), and Onchocerca volvulus-infected (P < 0.0001) individuals, whereas for LOAG_17808 protein, they were not significantly different between Loa-infected (GM, 0.123 ”g/ml) and uninfected (P = 0.06) and W. bancrofti-infected (P = 0.32) individuals. Moreover, only LOAG_16297 showed clear discriminative ability between L. loa and the other potentially coendemic filariae. Indeed, the specificity of the LOAG_16297 reverse LIPS assay was 96% (with a sensitivity of 77%). Thus, LOAG_16297 is a very promising biomarker that will be exploited in a quantitative point-of-care immunoassay for determination of L. loa mf densities

    Identification and Pilot Evaluation of Salivary Peptides from Anopheles albimanus as Biomarkers for Bite Exposure and Malaria Infection in Colombia

    No full text
    Insect saliva induces significant antibody responses associated with the intensity of exposure to bites and the risk of disease in humans. Several salivary biomarkers have been characterized to determine exposure intensity to Old World Anopheles mosquito species. However, new tools are needed to quantify the intensity of human exposure to Anopheles bites and understand the risk of malaria in low-transmission areas in the Americas. To address this need, we conducted proteomic and bioinformatic analyses of immunogenic candidate proteins present in the saliva of uninfected Anopheles albimanus from two separate colonies&mdash;one originating from Central America (STECLA strain) and one originating from South America (Cartagena strain). A ~65 kDa band was identified by IgG antibodies in serum samples from healthy volunteers living in a malaria endemic area in Colombia, and a total of five peptides were designed from the sequences of two immunogenic candidate proteins that were shared by both strains. ELISA-based testing of human IgG antibody levels against the peptides revealed that the transferrin-derived peptides, TRANS-P1, TRANS-P2 and a salivary peroxidase peptide (PEROX-P3) were able to distinguish between malaria-infected and uninfected groups. Interestingly, IgG antibody levels against PEROX-P3 were significantly lower in people that have never experienced malaria, suggesting that it may be a good marker for mosquito bite exposure in na&iuml;ve populations such as travelers and deployed military personnel. In addition, the strength of the differences in the IgG levels against the peptides varied according to location, suggesting that the peptides may able to detect differences in intensities of bite exposure according to the mosquito population density. Thus, the An. albimanus salivary peptides TRANS-P1, TRANS-P2, and PEROX-P3 are promising biomarkers that could be exploited in a quantitative immunoassay for determination of human-vector contact and calculation of disease risk

    A novel rapid test for detecting antibody responses to <i>Loa loa</i> infections

    No full text
    <div><p>Ivermectin-based mass drug administration (MDA) programs have achieved remarkable success towards the elimination of onchocerciasis and lymphatic filariasis. However, their full implementation has been hindered in Central Africa by the occurrence of ivermectin-related severe adverse events (SAEs) in a subset of individuals with high circulating levels of <i>Loa loa</i> microfilariae. Extending MDA to areas with coincident <i>L</i>. <i>loa</i> infection is problematic, and inexpensive point-of-care tests for <i>L</i>. <i>loa</i> are acutely needed. Herein, we present a lateral flow assay (LFA) to identify subjects with a serological response to <i>Ll</i>-SXP-1, a specific and validated marker of <i>L</i>. <i>loa</i>. The test was evaluated on serum samples from patients infected with <i>L</i>. <i>loa</i> (n = 109) and other helminths (n = 204), as well as on uninfected controls (n = 77). When read with the naked eye, the test was 94% sensitive for <i>L</i>. <i>loa</i> infection and was 100% specific when sera from healthy endemic and non-endemic controls or from those with <i>S</i>. <i>stercoralis</i> infections were used as the comparators. When sera of patients with <i>O</i>. <i>volvulus</i>, <i>W</i>. <i>bancrofti</i>, or <i>M</i>. <i>perstans</i> were used as the comparators, the specificity of the LFA was 82%, 87%, and 88%, respectively. A companion smartphone reader allowed measurement of the test line intensities and establishment of cutoff values. With a cutoff of 600 Units, the assay sensitivity decreased to 71%, but the specificity increased to 96% for <i>O</i>. <i>volvulus</i>, 100% for <i>W</i>. <i>bancrofti</i>, and 100% for <i>M</i>. <i>perstans</i>-infected individuals. The LFA may find applications in refining the current maps of <i>L</i>. <i>loa</i> prevalence, which are needed to eliminate onchocerciasis and lymphatic filariasis from the African continent.</p></div

    Analytical sensitivity of the Loa Antibody Rapid Test.

    No full text
    <p>The test was run as per the General Procedure, with 5 ÎŒL of undiluted pooled <i>L</i>. <i>loa</i> sera, (left), 5 ÎŒL pooled <i>L</i>. <i>loa</i> sera serially diluted in negative serum from uninfected North American individuals, with dilution factors of up to 1:1600 (center), or 5 ÎŒL pure negative delipidized serum (right). The test lines were quantified with the smartphone reader. The data is reported in reader units (RUs).</p
    corecore