3,128 research outputs found

    Intermuscular pocket for subcutaneous implantable cardioverter defibrillator: Single-center experience

    Get PDF
    AbstractThe subcutaneous implantable cardioverter defibrillator (S-ICD) is a novel device now accepted in clinical practice for treating ventricular arrhythmias. In 14 consecutive patients, S-ICD devices were placed in the virtual space between the anterior surface of the serratus anterior muscle and the posterior surface of the latissimus dorsi muscle. During a mean follow up of 9 months, no dislocations, infections, hematoma formations, or skin erosions were observed. Intermuscular implantation of the S-ICD could be a reliable, safe, and appealing alternative to the standard subcutaneous placement

    Relativistic Solar Cells

    Full text link
    Hybrid AMX3 perovskites (A=Cs, CH3NH3; M=Sn, Pb; X=halide) have revolutionized the scenario of emerging photovoltaic technologies. Introduced in 2009 by Kojima et al., a rapid evolution very recently led to 15% efficient solar cells. CH3NH3PbI3 has so far dominated the field, while the similar CH3NH3SnI3 has not been explored for photovoltaic applications, despite the reduced band-gap. Replacement of Pb by the more environment-friendly Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 properties are discussed in light of their exploitation for solar cells, and found to be entirely due to relativistic effects.Comment: 16 pages, 4 figure

    Appendiceal abscess in a giant left-sided inguinoscrotal hernia: a rare case of Amyand hernia

    Get PDF
    The hernia of Amyand is an inguinal hernia containing the appendix in the sac. It is a rare pathology often diagnosed only intra-operatively. We report a case even more rare of a giant left-sided inguinoscrotal Amyand hernia with appendiceal abscess without clinical findings of incarceration/strangulation, occlusion, perforation, or acute scrotum and with the presence in the sac of the caecum and other anatomical structures (last ileal loops, bladder and omentum). The 68-years-old man patient successfully underwent surgical treatment only through the hernia sac (meshless repair according to Postempski technique)

    Single cell classification of macrophage subtypes by label-free cell signatures and machine learning

    Get PDF
    Pro-inflammatory (M1) and anti-inflammatory (M2) macrophage phenotypes play a fundamental role in the immune response. The interplay and consequently the classification between these two functional subtypes is significant for many therapeutic applications. Albeit, a fast classification of macrophage phenotypes is challenging. For instance, image-based classification systems need cell staining and coloration, which is usually time- and cost-consuming, such as multiple cell surface markers, transcription factors and cytokine profiles are needed. A simple alternative would be to identify such cell types by using single-cell, label-free and high throughput light scattering pattern analyses combined with a straightforward machine learning-based classification. Here, we compared different machine learning algorithms to classify distinct macrophage phenotypes based on their optical signature obtained from an ad hoc developed wide-angle static light scattering apparatus. As the main result, we were able to identify unpolarized macrophages from M1- and M2-polarized phenotypes and distinguished them from naive monocytes with an average accuracy above 85%. Therefore, we suggest that optical single-cell signatures within a lab-on-a-chip approach along with machine learning could be used as a fast, affordable, non-invasive macrophage phenotyping tool to supersede resource-intensive cell labelling

    shear modulus of masonry walls a critical review

    Get PDF
    Abstract In the assessment of seismic performance of masonry buildings, the proper definition of mechanical parameters of masonry, the shear modulus in particular, is a critical issue. Moreover, considering that existing buildings are characterized by several masonry types, depending on the material as well as on the texture, mechanical parameters can vary in a very wide range, also because they depend on many other parameters and in particular on the integrity of the walls and on the stress level. Although the in situ or laboratory experimental evaluation of the G modulus has been the subject of a wide literature concerning flat jacks, diagonal and single compression and shear-compression test results, its outcomes are often contradictory. In effect, values given by different studies often differ significantly, even for the same class of masonry. Since the intrinsic scattering of the parameter is not sufficient by itself to justify the huge variability of the results, a critical discussion of the results as well as of the individual test arrangements is necessary to make the background more reliable, also in view of better addressing further studies- A huge database has been setup combining masonry test results available in the relevant scientific literature with the test results obtained in the framework of the in situ experimental campaign carried out by the authors for the assessment of seismic vulnerability of masonry school buildings in the Municipality of Florence. The analysis of the database underlines that values of the shear modulus G, which is a fundamental parameter for the definition of capacity curve for walls commonly used in non-linear static analysis, are extremely scattered. Testing methodology and arrangement are discussed and a possible procedure is proposed to arrive to sounder estimations of relevant mechanical parameter of existing building masonry

    Adoption of Digital Aerial Photogrammetry in Forest Planning: A Case Study of Canavese Forestry Consortium, NW Italy with Technical and Economic Issues

    Get PDF
    The forestry sector has been significantly affected by the recent advances in geomatics. Photogrammetric aerial acquisitions provide full coverage of forests, making possible a wall-to-wall mapping of the main forestry key variables, such as tree height and tree density, needed for forest planning and management purposes. This work summarizes the role that digital aerial photogrammetry (DAP) is expected to have in the forest planning context and analyzes the main products from DAP that are significantly required. According to their technical features, some strategies are proposed to program acquisitions in order to consciously set operational parameters needed for obtaining accuracy of measures compliant with forest planning requirements. Admitting that, in most cases, forest planners externalize DAP acquisitions to flying companies, the authors propose simple strategies for making an ex-post evaluation of flight conditions through a conscious processing of the external orientation parameters of images resulting after the bundle adjustment. Theoretical aspects are exemplified with reference to a practical case study relying on an aerial acquisition that, in 2019, the Canavese Forestry Consortium (NW Italy) made to support the ongoing redaction of its new forest plans. Finally, some economic concerns are presented to demonstrate the capability of this technique to absorb the most of costs associated with ground surveys, especially when large areas have to be investigated. In particular, about 66% of cost savings were found when comparing DAP-based forest mapping to traditional forest inventory strategies

    Adjuvants and alternative routes of administration towards the development of the ideal influenza vaccine.

    Get PDF
    Vaccination is universally considered as the principal measure for the control of influenza, which represents a significant burden worldwide, both from a health-care and a socio-economic viewpoint. Conventional non-adjuvanted trivalent influenza vaccines (TIVs) have been recognized as having some deficiencies, such as suboptimal immunogenicity particularly in the elderly, in patients with severe chronic diseases and immunocompromized, indeed, those groups of the population at higher risk of developing severe complications following influenza infection, when compared to healthy adults. Moreover, the protection offered by conventional vaccines may be reduced by periodic antigenic drifts, resulting in a mismatch between the circulating and vaccinal viral strains. Another gap regarding currently available vaccines is related to the egg-based manufacturing system for their production: not only the length of time involved with the latter but also the limited capacity of this platform technology represent a major limitation for the active prevention of influenza, which is particularly important in the case of a new pandemic strain. New technologies used in vaccine composition, administration and manufacture have led to major advances during the last few years, and clinical researchers have continued to work hard, investigating several different strategies to improve the performance of influenza vaccines: namely, the addition of different adjuvants (i.e., MF59- and AS03-vaccines, virosomal formulations), the use of alternative routes of administration or manufacture (i.e., intradermal, nasal and oral vaccines and cell culture- and reverse genetic-based vaccines) or of high doses of antigen, and the development of DNA-vaccines, or the use of conserved viral epitopes (i.e., the extracellular portion of the M2 protein, the nucleoprotein and some domains of the hemagglutinin), in the attempt to produce a "universal target" antigen vaccine. The knowledge acquired represents a fundamental challenge for the control of influenza. An overview of the most recent and interesting results, some of which gained from our own research experience, particularly concerning two successful approaches, of those outlined above, namely the use of: (i) the oil-in-water MF59-adjuvant, and (ii) the intradermal (ID) route for vaccine administration, through a novel microinjection system, will be reported and discussed, together with the possible implications and perspectives to optimize immunization policies against influenza in the near future
    • …
    corecore