
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 O

ct
ob

er
 2

02
2 
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Dannhauser D, Rossi D, De
Gregorio V, Netti PA, Terrazzano G, Causa F. 2022

Single cell classification of macrophage subtypes

by label-free cell signatures and machine

learning. R. Soc. Open Sci. 9: 220270.
https://doi.org/10.1098/rsos.220270
Received: 23 March 2022

Accepted: 8 September 2022
Subject Category:
Physics and biophysics

Subject Areas:
biotechnology/biophysics/bioengineering

Keywords:
single-cell, label-free, machine learning,

optical signature, macrophages
Authors for correspondence:
David Dannhauser

e-mail: david.dannhauser@unina.it

Filippo Causa

e-mail: filippo.causa@unina.it
© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Single cell classification of
macrophage subtypes by
label-free cell signatures
and machine learning
David Dannhauser1, Domenico Rossi2,

Vincenza De Gregorio1,3, Paolo Antonio Netti1,2,

Giuseppe Terrazzano4 and Filippo Causa1

1Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria
Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli
‘Federico II’, Piazzale Tecchio 80, Naples 80125, Italy
2Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia,
Largo Barsanti e Matteucci 53, Naples 80125, Italy
3Dipartimento di Biologia, Università degli Studi di Napoli ‘Federico II’,
Complesso Universitario di Monte S Angelo, Naples, Italy
4Dipartimento di Scienze (DiS), Università della Basilicata, Via dell’Ateneo Lucano 10,
Potenza 85100, Italy

FC, 0000-0002-5436-3857

Pro-inflammatory (M1) and anti-inflammatory (M2)
macrophage phenotypes play a fundamental role in the
immune response. The interplay and consequently the
classification between these two functional subtypes is
significant for many therapeutic applications. Albeit, a fast
classification of macrophage phenotypes is challenging.
For instance, image-based classification systems need cell
staining and coloration, which is usually time- and cost-
consuming, such as multiple cell surface markers,
transcription factors and cytokine profiles are needed.
A simple alternative would be to identify such cell types by
using single-cell, label-free and high throughput light
scattering pattern analyses combined with a straightforward
machine learning-based classification. Here, we compared
different machine learning algorithms to classify distinct
macrophage phenotypes based on their optical signature
obtained from an ad hoc developed wide-angle static
light scattering apparatus. As the main result, we were
able to identify unpolarized macrophages from M1- and
M2-polarized phenotypes and distinguished them from
naive monocytes with an average accuracy above 85%.
Therefore, we suggest that optical single-cell signatures
within a lab-on-a-chip approach along with machine
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learning could be used as a fast, affordable, non-invasive macrophage phenotyping tool to supersede
resource-intensive cell labelling.
lsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220270
1. Introduction
Macrophages play essential roles in immune responses. These cells play a primary role during the innate
immune response and, with phagocytosis, contribute to the elimination of microbes, foreign molecules
and cellular debris [1–3]. In the adaptive and antigen-specific phases of the immune response,
macrophages actively play the role of antigen-presenting cells (captured and processed during
phagocytosis) to T lymphocytes. Furthermore, macrophages are involved in numerous inflammatory
processes such as cancer, atherosclerosis and diabetes [4,5]. Macrophages represent the resident cells in
peripheral tissue derived from blood circulating monocytes that can extravasate from the blood stream
and migrate toward inflammatory and/or infection sites recruited by chemokine gradients [6]. During
the migration in peripheral tissues, monocytes transform into mature macrophages, presenting
significantly different cell properties, such as large cell volume, an activated nucleus and cytoplasm
composition (numerous vesicles and mitochondria). Yet their characteristics are not uniform through
the whole macrophage population, mainly depending on the environment they migrate toward and
chemokines they encounter. Macrophages can be classified from the polarization process [7–9], the
chemokines for their stimulation [10] and the involved cell pathways [11], macrophages into two
polarization paths called M1 and M2 phenotypes. M1 are classically activated macrophages, inducing
pro-inflammatory peripheral tissue milieu, by cytokine secretion, and exhibiting potent antimicrobial
properties through production of nitric oxide and radical oxygen intermediates, fostering lymphocytes
T-helper responses. In contrast, M2 are alternatively activated macrophages, which act in the opposite
way (pro-regenerative), inducing immune downregulation and tissue remodelling such as wound
healing and fibrosis [12,13]. Moreover, M2 produce cytokines with antiatherogenic and profibrotic
properties, which promote plaque stability.

Macrophages play a crucial role in either maintaining metabolic homeostasis and, if mis-regulated, in
the progression of abundance of inflammatory-mediated diseases by shifting the M1 versus M2 balance
toward either M1 or M2 phenotypes [5,12,13]. Therefore, an imbalance between M1 and M2 phenotype
equilibrium can be strictly correlated with a number of pathologic conditions, such as tissue fibrosis,
which can lead to the loss of organ functions [14–16] as well as inflammations [17], tuberculosis [18],
severe obesities [19], diabetes mellitus [20], rheumatoid arthritis [21], complication during pregnancies
[22] or cancers [23]. Also, in wound healing during the acute phase, M1 macrophages dominate, while
proper wound regeneration processes shift the balance toward M2-like macrophage phenotypes. To
date, many markers exist to characterize and distinguish M1 from M2 phenotypes by histochemical
reactions, such as cluster differentiation molecules (CD68 for M1 and CD163 for M2), chromatin
condensation or mRNA expressions (TNF-α for M1 and IL-10 for M2 recognition) [24–28].

A macrophage phenotype polarization type recognition can be achieved with one—or more—of the
previously mentioned methods, but all of them suffer from significant technological drawbacks. In
general, pre-processing of the biological sample is mandatory, and such procedures are usually time
consuming, cost-effective and, more important, they modify internal and external cell structures of the
investigated cells. Today, to the best of our knowledge, there are few methods to distinguish M1 from
M2 phenotype that prevent the mentioned technological drawbacks. For instance, Bertani et al. [29]
use a novel technique based on reflectance confocal microscopy and multivariate analysis. However, a
label-free approach to investigate possible structural differences between M1 versus M2 phenotype
and classify them is still missing.

In this manuscript, we present a straightforward method to classify polarized macrophage subtypes
by their morphometric point of view using a non-destructive light scattering approach [30] combined
with machine learning-based single cell classification (figure 1) [31]. Compared with standard flow
cytometric approaches—which are known to have high instrumentation and service costs—the
presented method is very simple and cost-effective, permitting a classification of cell subtypes without
large numbers of cells and resource-intensive labelling. More importantly, measurements are realized
using a lab-on-a-chip approach permitting the measurement of living cells in suspension, which
furthermore are collectable and re-usable for other diagnostic investigations or therapeutic approaches.
We have already investigated such optical signature of other human cell types and subtypes [32–36].
Here, we focused on intracellular differences of macrophages regarding dimensional and optical point
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the specific agarose gel result. Values in (a) and (b) represent the mean and the standard deviation (n = 3). L = DNA Ladder, 1, 2
and 3 = M0, M1 and M2 macrophage phenotypes, respectively. All cells were recovered from a healthy donor.
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of view. It is known that M2 present a greater mitochondrial density compared with M1, which can lead
to more pronounced side scattering profiles of single cells [37]. Therefore, optical cell signatures obtained
from our wide static light scattering approach can significantly improve macrophage phenotype
investigations by providing a morphological characterization of cells in suspension. Such fingerprint
of a given phenotype is the basis of the present approach to distinguish among monocytes and
different macrophage phenotypes.
2. Results and discussion
The different macrophage phenotypes (M0-unpolarized, M1- and M2-polarized) investigated in this
work were first examined via molecular analysis using reverse transcription polymerase chain reaction
(RT-PCR) [38] to confirm their polarization state. Data showed a relevant upregulation of CD68 gene
expression in M1 samples (37.7 ± 2.79 arb. units) compared with M0 and M2. No relevant CD68 signal
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was found in M0 and M2 samples. Instead, M2 exhibited a significant upregulation of IL-10 (79.8 ±
2.45 arb. units) compared with M0 and M1, demonstrating the acquisition of M2-polarized
macrophage phenotypes. A slight non-significant IL-10 expression (11.02 ± 3.9) was revealed in M1
samples (figure 2).

To classify suspended macrophage phenotypes according to their morphological properties, we
investigated their main cellular structures after fluorescence staining using a standard confocal
microscope. In more detail, we used a green nucleic acid stain to highlight nuclear and chromatin content
combined with a plasma membrane staining to indicate membrane structures. Our observations revealed
an evident structural difference of cell cytoplasm contents between M1 versus M0 or M2 macrophage
phenotypes, while M0 versus M2 macrophage phenotypes show similar cell staining results (figure 3a).
Before each scattering experiment cells were observed at quiescent bright-field condition to investigate
possible structural alterations (figure 3b) [38]. It is well known that macrophages present different sizes
and shapes in tissue compared with suspension. Moreover, the cell detaching method can alter
macrophages shape and properties. For instance, trypsin can down-modulate the surface CD163 level for
M2 macrophages [39]. Therefore, we decided to use a cell scraper to minimize possible cell recovery
issues after the detachment procedure. However, we observed in suspension a general round shape for all
macrophage phenotypes (figure 3c), while characteristic cytosolic granules were observed. Cell
observations result in a cell circularity ≥92% for all investigated macrophage phenotypes (figure 3c),
which confirms a physiological cell shape after the detaching method and before in-flow scattering
experiments. Furthermore, we observed a median monocyte diameter [38] with 9.89 ± 0.61 µm and
macrophage diameter [38] variations from 18.67 ± 3.23 to 17.41 ± 2.85 µm and down to 15.15 ± 2.74 µm,
for M0, M1 and M2, respectively.

After quiescent cell structure observations, we performed separate in-flow optical signatures
analysis—using the microfluidic-based experimental set-up indicated in figure 1—to investigate in
more detail morphological cell feature differences between monocytes, M0, M1 and M2 macrophage
phenotypes. Figure 4a summarizes in illustrative three-dimensional scatter plots the biophysical
properties [38] obtained from optical cell signatures (pooled data) and below detailed information of
statistical relevant property differences between the different cell types. Not surprisingly, substantial
property changes are visible in the overall cell dimension (figure 4b), from monocytes with 9.82 ±
1.59 µm to macrophage phenotypes, which range from approximately 11 to 16 µm. In more detail, M0
are the biggest cells with 15.66 ± 2.84 µm in dimension compared with 11.76 ± 1.72 µm and 14.25 ±
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2.29 µm for M1 and M2 phenotypes, respectively. Such dimension differences are in good agreement
with literature, where M0 and M2 cells are far bigger than M1 phenotypes [37]. Finally, nucleus over
cytoplasm ratio (figure 4c) of the three macrophage phenotypes is found to be similar among each
other with a ratio of 0.85, while being significantly different to their origin cell type with
approximately 0.80. As next step, we investigated the optical response of the nucleus (RIN, figure 4d )
between the different cell types. Hereby optical signatures revealed similar values for M0 and M1
phenotypes with a refractive index of approximately 1.42 compared with approximately 1.43 and
approximately 1.39 for the M2 phenotype and monocytes, respectively. Finally, the optical response of
the cell cytoplasm (RIC, figure 4e) was investigated from cell signatures, showing similar values for
M0 and M2 phenotypes with approximately 1.39 compared with approximately 1.38 and
approximately 1.36 for the M1 phenotype and monocytes, respectively.

Our outcome confirms morphometric cell property changes during cell polarization. In fact, it is well
known in literature that the macrophage cytoplasm consists of lysosomes, mitochondria and granules,
which composition can change for different phenotypes. From a scattering point of view, the
contribution of inner cell structures depends on their dimension, number, position and composition
(e.g. cytokine type and concentration). In fact, the optical signature of M2 macrophages illustrates
significant scattering differences compared with other phenotypes (figures 1 and 4). For instance, a
significantly higher RIN value is detected compared with M0 and M1 phenotypes, which could simply
imply a more active cell state or other cell content which is recognized as nucleus. Note that our
single-cell scattering approach simplifies a cell as core–shell construct. However, it has been
demonstrated that a change in optical density of nucleus can be related to an active state of chromatin
(active state of gene transcription). Regarding this, Rostam et al. observed that the fluorescence
intensity of nuclear staining is significantly low for M2 cells compared with M1, clearly showing a
more intense activity of M2, which may be related to the different action of transcriptional factors on
M1 and M2 polarized macrophages [40,41]. Interestingly, the work of Halaney et al., reports a detailed
analysis of light scattering distribution of M1 and M2 macrophage phenotypes [37]. The authors
found that M1 and M2 present a significantly different amount of scattering intensity at side angles
between 2 and 3°, which is in good agreement with our findings (see optical signature distributions in
figure 1) for M2 compared with M0 or M1 phenotypes. Compared with Halaney et al., a significantly
wider scattering angle range (2–30°) can be observed with our measurement technique, at single cell
level resolution [37]. In fact, such additional information allows a more detailed macrophage subtype
measurement, with a higher cell throughput rate, thanks to our microfluidic-based measurement
concept. From a structural point of view, such behaviour seems to be related to small inner structure
differences such as nuclei, lysosomes or/and mitochondria. In fact, mitochondria are known to add a
significant contribution at side scattering angles, due to their dimension, optical density and structural
location in the cell cytoplasm [37,42].
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Alongside the investigation of optical signatures in three-dimensional scatter plots and the handmade
classification, we developed a machine learning (ML) routine to predict an automated cell classification
accuracy of our measurement apparatus to distinguish macrophages from monocytes and, moreover,
(un-)polarized macrophage phenotypes (M0, M1 and M2) from each other (figures 5 and 6).
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Monocytes (n = 107) [38] show significantly different optical cell signatures compared with M0
macrophage phenotype (n = 149) [38] as reported in the three-dimensional scatter plots (figure 4). As
expected, a ML prediction accuracy greater than or equal to 99.2% was reached for e.g. linear,
quadratic or cubic support vector machine (SVM) classifier using the following parameters: cross-
validation = 5, misclassification cost = 1, box constraint level = 1, multi-class method = one-versus-one)
without principal component analysis resulting in a prediction speed approximately 19 000
observation s−1 and training time approximately 0.24 s.
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Next, we trained a ML algorithm with the biophysical cell properties of (un-)polarized macrophage
cell subclasses. First, we trained M1 (n = 167) [38] versus M2 (n = 215) [38] macrophage phenotypes,
where we found that the quadratic SVM classifier resulted as the most suitable algorithm according
to calculation speed and prediction accuracy (training time approximately 0.51 s with approximately
31 000 observations s−1 and a total misclassification cost of 60) using the following ML parameters:
one neighbour, Euclidean metric distance, equal distance weights, box constraint level of 1 and a
kernel scale of 1. In fact, such ML parameters are used as a standard penalty for margin-violating
observations, to prevent significant overfitting of the experimental data. We repeated the classification
process five times resulting in an average prediction accuracy of approximately 85.1%. Other
classifiers resulted in lower performances: the linear SVM-trained classifier showed an accuracy of
approximately 84.3%, fine K nearest neighbour (KNN) approximately 78.3% and medium tree
approximately 80.1%. The presented classifier shows a positive prediction for M1 cells of 83.2% and
85.1% for M2 cells (figure 5a). In addition, the parallel coordinate plots in figure 5b highlight the
correlation between the four extracted biophysical cell properties, where each property is represented
by a vertical axis.

Second, we trained M0 (n = 149) versus M1 (n = 167) versus M2 (n = 215) macrophage phenotypes,
where we obtained that the cosine KNN classifier resulted as the most suitable algorithm according
to calculation speed and prediction accuracy (training time approximately 0.25 s with approximately
25 000 observations s−1 and a total misclassification cost of 147) using the following ML parameters:
10 neighbours and equal distance weights. Also, in this case, we repeated the classification process
five times, resulting in an average prediction accuracy of approximately 72.3%. Other classifiers
resulted in lower prediction performances for the investigated macrophage phenotypes: the linear
SVM-trained classifier showed an accuracy of approximately 71.7%, fine K nearest neighbour (KNN)
approximately 64.2% and medium tree approximately 70.2%. The prediction accuracy results in a PPV
of 65.2%, 74.2% and 76.1% for M0, M1 and M2, respectively (figure 6a).

Our results indicate that the mentioned ML classifier has better sensitivity in classifying M2
macrophage phenotype cells compared with other cells, due to the significantly different combination
of biophysical properties (figure 6b). This could be ascribable to the different chromatin condensation
and mitochondria presence in M2 cells, compared with other investigated cells.
3. Conclusion
Image-based machine learning is widely used in research and therapeutic applications, while the
label-free investigation of scattering data is still underrated. We highlight in this work the potential of
a simple and cost-effective microfluidic-based macrophage phenotype (unpolarized versus polarized)
classification approach. Therefore, we analysed first in quiescent and afterwards in-flow condition the
biophysical properties of polarized macrophage phenotypes as well as monocytes. Such living cell
investigation resulted in a distinctive optical signature, which we used as input for a supervised ML-
based cell classification. The analyses of more than 600 cells from three different donors allowed to
predict macrophage phenotypes with an accuracy above 72% for M1 versus M2 macrophages and
even more than 85% for M0 versus M1 and M2 phenotypes. Such outcome raises the hope for real-
time-based cell analysis approaches based on scattering patterns. We believe that our measurement
approach can be of significant therapeutic interest, where an identification, quantification and
monitoring of both M1 to M2 phenotype is needed.
4. Material and methods
4.1. Cell collection
Humanmacrophages were recovered from healthy donors after obtaining informed consent, in accordance
with relevant guidelines and regulations. In more detail, a standard venepuncture procedure was
performed using standard K2EDTA tubes (Vacutainer, BD) to prevent coagulation. After sample
collection, a standard density gradient separation was performed as followed: first, the whole volume of
blood was diluted with an equal volume of phosphate buffered saline (PBS, Euroclone), and then gently
layered on with an equal volume fraction of density gradient medium (Histopaque-1077, Sigma Aldrich)
using a 50 ml centrifuge tube (Falcon). After that, a centrifugation step was performed at 300~g for 30 min
and disabled machine brake. After the centrifugation, the resulting peripheral blood mononuclear cells
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(PBMC) were visible as a ring at the interface between the gradient medium (lower part) and the blood
plasma (upper part). PBMC were collected with a disposable Pasteur pipette and washed in 10 ml of
erythrocyte lysis buffer, to eliminate a possible contamination. Finally, cells were cultured in RPMI-1640
medium, supplemented with 10% fetal bovine serum, 1% L-Glu and 1% penicillin/streptomycin
(Euroclone).

4.2. Macrophage phenotype polarization
PBMC were divided into three culture flasks (T-75, Corning) of equally distributed volume fractions to
transform monocytes in unpolarized (M0), M1-polarized (M1) and M2-polarized (M2) macrophage
phenotypes. After 24 h of incubation at 37°C and 5% CO2, cells in suspension (lymphocytes) were
discarded, while adherent monocytes were treated for the following macrophage differentiation (day
0). First, cell medium was aspirated from the flask and substituted with RPMI-1640 and specific
macrophage phenotype generation media (M0 = C-28057; M1 = C-28055; M2 = C-28056, Promocell).
Complete cell medium was made of base medium with supplement mix and cytokines, following the
manufacturer’s instructions (Promocell). After 6 days (day 6) each flask was supplied with a volume
of cell medium equal to 75% of the initial cell volume (day 0). At day 7 a new aliquot of cytokine mix
(Promocell) was added to the medium. At day 9 the cell medium of each flask was aspirated to
eliminate possible suspended cells, and a fresh volume of appropriate cell medium was added to each
flask. At day 10, polarized and not-activated macrophages were detached from flask surfaces using a
cell scraper tool and subsequently centrifuged at 200~g for 10 min in 15 ml centrifuge tubes (Falcon).
Finally, cells were resuspended into 200 µl of complete RPMI-1640 medium, ready to be analysed with
our optical cell investigation approach.

4.3. Microfluidic device and cell alignment
Cell measurements were performed with a microfluidic device, composed of a supporting geometry
fabricated with a three-dimensional printer (Objet30 pro, Stratasys) and a series of two glass channels.
Briefly, a round-shaped glass channel (TSP050375, Molex)—where three-dimensional alignment of
cells takes place—is inserted on one side in a square shaped readout channel (8240, Vitrocom)—where
single cell investigation takes place—which permits the precise in-flow optical readout of cells. The
other end of the round-shaped channel is immersed in the cell sample. By applying a certain pressure
on the sample liquid, the cell medium is pushed through the channel and enters the microfluidic
device. Such sample liquid consists of cells immersed in an alignment medium, consisting of a highly
biocompatible viscoelastic polymer (polyethylene oxide, PEO, molecular weight = 4 MDa, Sigma
Aldrich) diluted in PBS at 0.4 wt%. Thanks to the resulting fluid properties, generated by viscoelastic
fluid forces, cells are strictly aligned to the centreline of the round-shaped channel and subsequently
remain aligned at the centreline of the subsequent microfluidic readout channel. Note that fluid forces
have been chosen to prevent cell deformation effects, while ensuring sufficient single cell alignment.
In more detail, three-dimensional cell alignment is achieved if the following relationship
3Wi b2ðL=2RÞ . �ln(3:5b) is satisfied. Where Wi ¼ 2lU=2R, uses l the relaxation time (0.197 ms) of
the viscoelastic fluid, the average fluid velocity (1496 µm−1), R the channel radius (25 µm), b ¼ r1=R, a
non-dimensional geometrical channel parameter, with r1 being the cell radius and L the channel
length (0.35 m). However, the subsequent readout channel allows precise single cell analysis due to its
square shape of 400 × 400 μm and preserved three-dimensional alignment. To ensure continuity
between the alignment and readout channel, the alignment section is collinearly inserted in the
readout section and sealed with a soft ferrule (UP-N-123–03X, Idex). At the end of the readout
channel, cells can be recovered for further cell studies.

4.4. Sample preparation and observation
Cells are diluted in alignment medium to obtain a final cell concentration of approximately 1 × 105 cells
ml−1. Such cell concentration ensures a throughput rate of approximately 2 cells s−1 passing through the
readout laser beam. Please note that the sample concentration and fluid velocities were optimized to
reduce possible cell–cell interactions and cell deformation effects, while the maximum throughput
performance of the actual measurement approach is approximately 50 cells s−1. Finally, each
investigated macrophage phenotype is checked for mycoplasma infection. For off-chip cell
investigations, macrophage types were observed with an inverted microscope (IX81, Olympus), to
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check their morphometric status before light scattering analysis. Therefore, a small volume of 10 µl was
collected and observed using a 100× magnification and CMOS camera system (Orca flash 4.0,
Hamamatsu Photonics). Since in suspension, cells were considered as healthy when they preserved
their round shape without significant alterations at the external cell membrane. In addition,
morphological cell alterations were investigated after immunostaining using a confocal microscope
(TCS STED CW, Leica). For immunostaining, cells were first fixed with 4% paraformaldehyde (Sigma
Aldrich) for 15 min at room temperature, then rinsed twice with PBS. Afterwards, permeabilization—
with 0.1% Tryton X-100 (Sigma Aldrich) for 5 min—was performed and cell nucleus (Sytox Green,
Thermo Fisher Scientific) as well as cell membrane (Cell Mask orange, Thermo Fisher Scientific) were
investigated using µ-slide chambers (Ibidi).
rnal/rsos
R.Soc.Open
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4.5. Reverse transcription polymerase chain reaction analysis
To distinguish different macrophage phenotypes (M0-unpolarized, M1- and M2-polarized), reverse
transcriptase polymerase chain reaction (RT-PCR) was carried out. To preserve the integrity and to
stabilize the RNA for molecular analysis, freshly isolated monocytes derived from PBMCs (0.5·105
cells) were centrifuged at 12 000~g for 2 min, the supernatant was removed, and the pellet was
immediately suspended in 0.1 ml of RNAlater solution (Sigma Aldrich). The samples were stored at
4°C overnight (to allow the solution to thoroughly penetrate the tissue), then archived at −80°C. For
RNA isolation, the RNAlater solution was diluted by adding an equal volume of ice-cold PBS to reduce
the density of the solution avoiding damage to the cells and then centrifuged at normal speeds (5000~g).
Then, total RNA was isolated using RNeasy plus mini kit (QIAGEN). Agarose gel electrophoresis was
used to determine RNA integrity and RNA concentrations were examined by UV-light imaging system
(Bio-Rad). Two hundred nanograms of total cellular RNA were reverse-transcribed (expand reverse
transcriptase, Roche Diagnostics) into complementary DNA (cDNA) using random hexamer primers at
42°C for 45 min (random hexamers, Roche Diagnostics), according to the manufacturer’s instructions.
cDNA (2 µl) was amplified in a reaction mixture containing 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2,
50 mM KCl, 200 µM dNTPs and 2.5 U of Taq DNA polymerase (Roche Diagnostics) in a final volume of
50 µl. The reaction was carried out in a DNA thermal cycler (Applied Biosystem). The expression of
IL-10, CD68, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) used as a housekeeping gene
was examined. Amplification primers were: IL-10, forward 50-atgccccaagctgagaaccaagaccaa-30 and
reverse 50-tctcaaggggctgggtcagctatccca-30; CD68, forward 50-gcaactcgagcatcattctttcacc-30 and reverse 50-
gatgagaggcagcaagatgga-30; GAPDH, 50-ccacccatggcaaattccatggca-30 and 50-tctagactggcaggtcaggtccacc-30.
The amplification protocol consisted of an initial denaturation step at 95°C for 1 min. The cycles used for
the primers were: 95°C for 1 min, 58°C for 1 min, for 35 cycles for IL-10; 95°C for 1 min, 51°C for 1 min,
for 33 cycles for CD68. PCR products were analysed by electrophoresis on 1.8% agarose gel in TBE
buffer 0.5×. Densitometric analysis of agarose gel stained with ethidium bromide was carried out
measuring the band’s intensity using ImageJ software and normalized by the housekeeping gene
GAPDH. All samples were repeated three times.
4.6. Experimental set-up and image processing
We used a small-angle light scattering technique combined with a viscoelastic microfluidic single-cell
alignment approach [30–32] In more detail, our cell investigation approach reveals biophysical
properties of living cells from individual cell scattering records generated in a continuous angular
range from approximately 2°−30° and an angular resolution of approximately 0.1°. Briefly, cells
flowing in the readout channel of the microfluidic device pass through a collimated laser beam (λ =
632.8 nm). The resulting scattered light is collected and mapped on a camera sensor (ORCA Flash 4.0,
Hamamatsu Photonics). The recorded scattering signatures are processed by a self-written Matlab
(R2020b, MathWorks) routine to directly obtain the searched-for light-scattering profile (LSP) and
consequently the biophysical cell properties of each passing cell. More specifically, collected LSPs are
matched with a lookup table (greater than or equal to 335 000 curves) of previously calculated
theoretical LSPs to obtain biophysical cell properties (diameter, D; Nucleus/cytoplasm-ratio, N/C-
ratio; refractive index of the nucleus and cytoplasm, RIN and RIC, respectively) and to distinguish
morphological properties within the sub-micrometric cell dimension range. More detailed information
about the LSP matching is shown elsewhere [30].
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4.7. Machine learning
The machine learning (ML) approach was carried out with a Matlab (R2020b, MathWorks) routine to
classify circulating monocytes from macrophages, as well as the main subtypes of macrophage
phenotypes (M0, M1 and M2) based on their biophysical properties retrieved from optical cell
signatures. Several classification methods were set up with operational parameters chosen based on
previous experiments of our working group [31,33]. For ML training, a randomly chosen subset of
data (all donors) was used, followed by testing classification accuracy on the remaining data (all
donors), while the classification accuracy was measured by fivefold cross-validation. The ML results
are shown in a 2 × 2 matrix for M1 versus M2 and 3 × 3 matrix for M0 versus M1 versus M2, with the
following values: positive predictive value (PPV) and false discovery rate (FDR).

4.8. Statistical analysis
All results are presented as the mean ± standard error. When normality assumptions were met, the
statistical significance for two or more groups of data was calculated by using a one-way ANOVA
with corresponding Tukey’s multiple comparison. Significance is indicated by p values (nsp > 0.05;
�p < 0.05, ��p < 0.01, ���p < 0.001) combined with F-values (F ). We used Excel 365 (Microsoft
Corporation) for all statistical analyses [34–36].

Ethics. Cells were obtained from the blood bank of the medical school of the Federico II University of Naples (Italy). At
the time of blood donation, each donor signed an informed consent (model no. 5526 of Azienda Ospedaliera
Universitaria ‘FEDERICO II’, Naples, Italy) in which it is specified that waste parts of the blood, not useful for the
medical–therapeutic purposes of blood donation, could be used for scientific research purposes.
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