136 research outputs found

    A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators

    Get PDF
    Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address). Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i) make full use of pollution dispersion models; (ii) localize population on a fine-scale; and (iii) explicitly account for the presence of potential environmental and socioeconomic confounding

    Computational fluid dynamics (CFD) modelling and experimental validation of thermal processing of canned fruit salad in glass jar

    Get PDF
    In this paper the heat transfer of a fruit salad during the pasteurization treatment was investigated. The objective of the paper was to develop and validate a computational fluid dynamics (CFD) model for predicting the temperature profiles during the thermal processing of this sample. Samples of a commercial fruit salad, composed of five different fruits with different shapes, sizes and thermal properties, submerged in water/sugar syrup, were submitted to thermal treatments in a pilot plant and temperature profiles at different locations were experimentally recorded. Results showed that the slowest heating point (SHP) was positioned at 19–20% of the can height: fruit closest to the SHP such as pear presented the lowest F value. Moreover, F values resulted to be influenced by the distance from the jar bottom as function of natural convection motion of the syrup. CFD model simulations data were then successfully validated against the experimental ones: results, expressed as RMSE, showed a good fitting between calculated and experimental data, both for syrup (mean RMSE 1.47 C) and fruit pieces (mean RMSE 1.63 C). In addition, F values calculated from both experimental and simulated temperatures resulted very similar with only little differences. In conclusion, the proposed approach and mathematical model can thus be usefully applied for the simulation and prediction of thermal processes of canned fruit salad for process design and optimization

    First Pandemic H1N1 Outbreak from a Pig Farm in Italy

    Get PDF
    The first outbreak of the pandemic H1N1 virus in a swine breeder farm in Italy in November 2009 was reported. Clinical signs observed in sows included fever, depression, anorexia and agalactia, while in piglets diarrhoea and weight loss. The morbidity in sows was approximately 30% and the accumulated mortality rate was similar with those usually reported in piggeries (<10%). Virus was isolated from piglets (A/Sw/It/290271/09) and the sequencing of the whole genome was then performed. Comparison with all (H1N1)v sequences available in GenBank shows A/Sw/It/290271/09 three unique amino-acid (aa) changes in PB2 (S405T), PB1 (K386R) and PA (K256Q), not yet associated to any well characterized phenotype markers of Influenza viruses. All eight aa at positions representing the so-called species specific swine-human signatures, found in both swine and in the pandemic H1N1v, are also present. The M2 protein displays the C55F and the PA protein the S409N substitutions, both corresponding to enhanced transmission phenotype markers. Phylogenetic analysis showed that the virus was genetically related to the pandemic H1N1 virus. In addition, serological samples were collected from 40 sows, of which 20 resulted positive to the pandemic H1N1 virus by HI test proving a virus circulation in the farm

    Genomic study of the response of chicken to highly pathogenic avian influenza virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The host mounts an immune response to pathogens, but few data are currently available on the role of host genetics in variation in response to avian influenza (AI). The study presented here investigated the role of the host genetic background in response to <it>in vivo</it> infection with AI virus (AIV).</p> <p>Methods</p> <p>Experimental lines of chicken and commercial crosses were experimentally infected intratracheally with 10<sup>3</sup> EID<sub>50</sub>/bird of A/Chicken/Italy/13474/99 H7N1 highly pathogenic avian influenza virus (HPAIV). Chickens were genotyped for the <it>Mx</it> polymorphism causing the S631N mutation, and for the Major Histocompatibility Complex (MHC). Whole-genome genotyping was carried out using 60 k Single Nucleotide Polymorphism (SNP) array developed by the poultry Genome-Wide Marker-Assisted Selection Consortium (GWMASC).</p> <p>Results</p> <p>Variability in response of different chicken lines to the HPAIV infections and some degree of resistance to AI were observed: a statistically significant effect of chicken line on the response to infection was found. There was no association between survival in healthy conditions and polymorphisms at the <it>Mx</it> gene and the MHC-<it>B</it> region. The analysis based on the 60 k SNPs provided a good clustering of the chicken lines, but no specific genetic cluster associated with response to AIV was identified.</p> <p>Conclusions</p> <p>Neither the genotype at the <it>Mx</it> gene or MHC-<it>B</it> locus, nor for SNP spanning the whole-genome identified loci involved in variations to response to AIV infection. These results point towards the possibility that either the genetic factors affecting the response of chickens to the H7N1 HPAIV are weak, or relevant alleles were not segregating in the studied populations.</p

    The challenge of west nile virus in Europe: Knowledge gaps and research priorities

    Get PDF
    West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries

    Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis

    Get PDF
    OBJECTIVE: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS).METHODS: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results.RESULTS: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p =0.015) with increased risk of severe COVID-19. Recent use (&lt;1month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p =0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses.INTERPRETATION: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists. ANN NEUROL 2021

    Encephalomyocarditis virus infection in an Italian zoo

    Get PDF
    A fatal Encephalomyocarditis virus (EMCV) infection epidemic involving fifteen primates occurred between October 2006 and February 2007 at the Natura Viva Zoo. This large open-field zoo park located near Lake Garda in Northern Italy hosts one thousand animals belonging to one hundred and fifty different species, including various lemur species. This lemur collection is the most relevant and rich in Italy. A second outbreak between September and November 2008 involved three lemurs. In all cases, the clinical signs were sudden deaths generally without any evident symptoms or only with mild unspecific clinical signs. Gross pathologic changes were characterized by myocarditis (diffuse or focal pallor of the myocardium), pulmonary congestion, emphysema, oedema and thoracic fluid. The EMCV was isolated and recognized as the causative agent of both outbreaks. The first outbreak in particular was associated with a rodent plague, confirming that rats are an important risk factor for the occurrence of the EMCV infection

    West Nile virus: characterization and diagnostic applications of monoclonal antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of West Nile virus (WNV) infections is often difficult due to the extensive antigenic cross-reactivity among flaviviruses, especially in geographic regions where two or more of these viruses are present causing sequential infections. The purpose of this study was to characterize a panel of monoclonal antibodies (MAbs) produced against WNV to verify their applicability in WNV diagnosis and in mapping epitope targets of neutralizing MAbs.</p> <p>Methods</p> <p>Six MAbs were produced and characterized by isotyping, virus-neutralization, western blotting and MAb-epitope competition. The MAb reactivity against various WNVs belonging to lineage 1 and 2 and other related flaviviruses was also evaluated. The molecular basis of epitopes recognized by neutralizing MAbs was defined through the selection and sequencing of MAb escape mutants. Competitive binding assays between MAbs and experimental equine and chicken sera were designed to identify specific MAb reaction to epitopes with high immunogenicity.</p> <p>Results</p> <p>All MAbs showed stronger reactivity with all WNVs tested and good competition for antigen binding in ELISA tests with WNV-positive equine and chicken sera. Four MAbs (3B2, 3D6, 4D3, 1C3) resulted specific for WNV, while two MAbs (2A8, 4G9) showed cross-reaction with Usutu virus. Three MAbs (3B2, 3D6, 4D3) showed neutralizing activity. Sequence analysis of 3B2 and 3D6 escape mutants showed an amino acid change at E307 (Lys → Glu) in the E protein gene, whereas 4D3 variants identified mutations encoding amino acid changed at E276 (Ser → Ile) or E278 (Thr → Ile). 3B2 and 3D6 mapped to a region on the lateral surface of domain III of E protein, which is known to be a specific and strong neutralizing epitope for WNV, while MAb 4D3 recognized a novel specific neutralizing epitope on domain II of E protein that has not previously been described with WNV MAbs.</p> <p>Conclusions</p> <p>MAbs generated in this study can be applied to various analytical methods for virological and serological WNV diagnosis. A novel WNV-specific and neutralizing MAb (4D3) directed against the unknown epitope on domain II of E protein can be useful to better understand the role of E protein epitopes involved in the mechanism of WNV neutralization.</p
    corecore