733 research outputs found

    Graft monocytic myeloid-derived suppressor cell content predicts the risk of acute graft-versus-host disease after allogeneic transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood stem cells.

    Get PDF
    Abstract Myeloid-derived suppressor cells (MDSCs) are powerful immunomodulatory cells that in mice play a role in infectious and inflammatory disorders, including acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation. Their relevance in clinical acute GVHD is poorly known. We analyzed whether granulocyte colony-stimulating factor (G-CSF) administration, used to mobilize hematopoietic stem cells, affected the frequency of MDSCs in the peripheral blood stem cell grafts of 60 unrelated donors. In addition, we evaluated whether the MDSC content in the peripheral blood stem cell grafts affected the occurrence of acute GVHD in patients undergoing unrelated donor allogeneic stem cell transplantation. Systemic treatment with G-CSF induces an expansion of myeloid cells displaying the phenotype of monocytic MDSCs (Lin low/neg HLA-DR − CD11b + CD33 + CD14 + ) with the ability to suppress alloreactive T cells in vitro, therefore meeting the definition of MDSCs. Monocytic MDSC dose was the only graft parameter to predict acute GVHD. The cumulative incidence of acute GVHD at 180 days after transplantation for recipients receiving monocytic MDSC doses below and above the median was 63% and 22%, respectively ( P = .02). The number of monocytic MDSCs infused did not impact the relapse rate or the transplant-related mortality rate ( P > .05). Although further prospective studies involving larger sample size are needed to validate the exact monocytic MDSC graft dose that protects from acute GVHD, our results strongly suggest the modulation of G-CSF might be used to affect monocytic MDSCs graft cell doses for prevention of acute GVHD

    Very low noise AC/DC power supply systems for large detector arrays

    Get PDF
    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0–60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μVRMS (CUORE setup) and 90 μVRMS (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled)

    Circulating miRNA panel for prediction of acute graft-versus-host disease in lymphoma patients undergoing matched unrelated hematopoietic stem cell transplantation

    Get PDF
    Acute graft-versus-host disease (aGVHD) results in significant morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Noninvasive diagnostic and prognostic tests for aGVHD are currently lacking, but would be beneficial in predicting aGVHD and improving the safety of allo-HSCT. Circulating microRNAs exhibit marked stability and may serve as biomarkers in several clinical settings. Here, we evaluated the use of circulating microRNAs as predictive biomarkers of aGVHD in lymphoma patients after allo-HSCT from matched unrelated donors (MUDs). After receiving informed consent, we prospectively collected plasma samples from 24 lymphoma patients before and after unmanipulated MUD allo-HSCT; microRNAs were then isolated. Fourteen patients developed aGVHD symptoms at a median of 48 days (range: 32–90) post-transplantation. Two patients developed intestinal GVHD, eight cutaneous GVHD, and four multiorgan GVHD. The microRNA expression profile was examined using quantitative real-time polymerase chain reaction (qRT-PCR). MicroRNAs 194 and 518f were significantly upregulated in aGVHD samples compared with samples taken from non-aGVHD patients. Remarkably, these upregulated microRNAs could be detected before the onset of aGVHD. Pathway prediction analysis indicated that these microRNAs may regulate critical pathways involved in aGVHD pathogenesis. Considering the noninvasive characteristics of plasma sampling and the feasibility of detecting miRNAs after allo-HSCT using real-time polymerase chain reaction, our results indicate that circulating microRNAs have the potential to enable an earlier aGVHD diagnosis and might assist in individualizing therapeutic strategies after MUD allo-HSCT. Nevertheless, standardization of blood sampling and analysis protocols is mandatory for the introduction of miRNA profiling into routine clinical use

    CLARO-CMOS, an ASIC for single photon counting with Ma-PMTs, MCPs and SiPMs

    Get PDF
    An ASIC named CLARO-CMOS was designed for fast photon counting with MaPMTs, MCPs and SiPMs. The prototype was realized in a .35 μm CMOS technology and has four channels, each with a fast amplifier and a discriminator. The main features of the design are the high speed of operation and the low power dissipation, below 1 mW per channel. This paper focuses on the use of the CLARO for SiPM readout. The ASIC was tested with several SiPMs of various sizes, connected to the input of the chip both directly and through a coaxial cable about one meter long. In the latter case the ASIC is still fully functional although the speed of response is affected by the cable capacitance. The threshold could be set just above the single photoelectron level, and with 1 ×1 mm 2 SiPMs the discrete photoelectron peaks could be well resolve

    An Environmentally Friendly Nb–P–Si Solid Catalyst for Acid-Demanding Reactions

    Get PDF
    Here, we report the structural characteristics, the surface properties, and the catalytic performances of a Nb–P–Si ternary oxide material (2.5Nb2O5·2.5P2O5·95SiO2, 2.5NbP) in two reactions of importance for biomass valorisation and green industrial production: hydrolysis of inulin and esterification of oleic acid with polyalcohol for biolubricant production. High dispersion of the Nb centers, ascertained by UV–vis–DRS, 29Si, 31P, and 1H solid-state NMR spectroscopy, is the key point for the successful activity of 2.5NbP. Intrinsic and effective acidities of the sample were studied by FT-IR of adsorbed pyridine in the absence and presence of water and by volumetric titrations of the acid sites in cyclohexane and in water, to enlighten the nature and amount of acid sites in different environments. For both studied reactions, 2.5NbP catalyst exhibits water-tolerant acidic sites, mainly Brønsted ones, giving higher activity and better stability in the reaction medium than well-known niobium oxophosphate catalyst, which is considered one of the best water-tolerant acid catalysts
    • …
    corecore