2,950 research outputs found

    A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders

    Full text link
    The European market clearing problem is characterized by a set of heterogeneous orders and rules that force the implementation of heuristic and iterative solving methods. In particular, curtailable block orders and the uniform purchase price (UPP) pose serious difficulties. A block is an order that spans over multiple hours, and can be either fully accepted or fully rejected. The UPP prescribes that all consumers pay a common price, i.e., the UPP, in all the zones, while producers receive zonal prices, which can differ from one zone to another. The market clearing problem in the presence of both the UPP and block orders is a major open issue in the European context. The UPP scheme leads to a non-linear optimization problem involving both primal and dual variables, whereas block orders introduce multi-temporal constraints and binary variables into the problem. As a consequence, the market clearing problem in the presence of both blocks and the UPP can be regarded as a non-linear integer programming problem involving both primal and dual variables with complementary and multi-temporal constraints. The aim of this paper is to present a non-iterative and heuristic-free approach for solving the market clearing problem in the presence of both curtailable block orders and the UPP. The solution is exact, with no approximation up to the level of resolution of current market data. By resorting to an equivalent UPP formulation, the proposed approach results in a mixed-integer linear program, which is built starting from a non-linear integer bilevel programming problem. Numerical results using real market data are reported to show the effectiveness of the proposed approach. The model has been implemented in Python, and the code is freely available on a public repository.Comment: 15 pages, 7 figure

    A Community Microgrid Architecture with an Internal Local Market

    Full text link
    This work fits in the context of community microgrids, where members of a community can exchange energy and services among themselves, without going through the usual channels of the public electricity grid. We introduce and analyze a framework to operate a community microgrid, and to share the resulting revenues and costs among its members. A market-oriented pricing of energy exchanges within the community is obtained by implementing an internal local market based on the marginal pricing scheme. The market aims at maximizing the social welfare of the community, thanks to the more efficient allocation of resources, the reduction of the peak power to be paid, and the increased amount of reserve, achieved at an aggregate level. A community microgrid operator, acting as a benevolent planner, redistributes revenues and costs among the members, in such a way that the solution achieved by each member within the community is not worse than the solution it would achieve by acting individually. In this way, each member is incentivized to participate in the community on a voluntary basis. The overall framework is formulated in the form of a bilevel model, where the lower level problem clears the market, while the upper level problem plays the role of the community microgrid operator. Numerical results obtained on a real test case implemented in Belgium show around 54% cost savings on a yearly scale for the community, as compared to the case when its members act individually.Comment: 16 pages, 15 figure

    The discovery of the Higgs boson

    Get PDF
    The Higgs boson identified at the CERN laboratories.Individuato presso i laboratori del CERN il bosone di Higgs

    SiPM and front-end electronics development for Cherenkov light detection

    Full text link
    The Italian Institute of Nuclear Physics (INFN) is involved in the development of a demonstrator for a SiPM-based camera for the Cherenkov Telescope Array (CTA) experiment, with a pixel size of 6×\times6 mm2^2. The camera houses about two thousands electronics channels and is both light and compact. In this framework, a R&D program for the development of SiPMs suitable for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different photosensors have been produced at Fondazione Bruno Kessler (FBK), with different micro-cell dimensions and fill factors, in different geometrical arrangements. At the same time, INFN is developing front-end electronics based on the waveform sampling technique optimized for the new NUV SiPM. Measurements on 1×\times1 mm2^2, 3×\times3 mm2^2, and 6×\times6 mm2^2 NUV SiPMs coupled to the front-end electronics are presentedComment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Compact high-brightness and highly manufacturable blue laser modules

    Get PDF
    Blue laser diode sources have already proved to be an effective alternative for material processing, especially of high reflective materials, such as copper; now the challenge is to increase their power while improving brightness and reducing the cost-per-watt. The paper presents the development of a family of blue laser modules that, making use of the same platform and assembly lines of similar 9xx nm modules, can achieve an unprecedented combination of power, brightness, compactness and cost reduction. These modules rely on a proprietary architecture to combine a plurality of chips through spatial and polarization multiplexing, obtaining up to 100W of output power in a 100 μm fiber. Preliminary experimental results for module making use of spatial multiplexing report 35W output power in a 50 μm fiber

    The colours of the Higgs boson: a study in creativity and science motivation among high-school students in Italy

    Get PDF
    AbstractWith the increasing shift from STEM to STEAM education, arts-based approaches to science teaching and learning are considered promising for aligning school science curricula with the development of twenty-first century skills, including creativity. Yet the impact of STEAM practices on student creativity and specifically on how the latter is associated with science learning outcomes have thus far received scarce empirical support. This paper contributes to this line of research by reporting on a two-wave quantitative study that examines the effect of a long-term STEAM intervention on two cognitive processes associated with creativity (act, flow) and their interrelationships with intrinsic and extrinsic components of science motivation. Using pre- and post-survey data from 175 high-school students in Italy, results show an overall positive effect of the intervention both on the act subscale of creativity and science career motivation, whereas a negative effect is found on self-efficacy. Gender differences in the above effects are also observed. Further, results provide support for the mediating role of self-efficacy in the relationship between creativity and science career motivation. Implications for the design of STEAM learning environments are discussed

    A Comparison of Copromicroscopic and Molecular Methods for the Diagnosis of Cat Aelurostrongylosis

    Get PDF
    The gold standard method for the diagnosis of cat aelurostrongylosis is the detection of Aelurostrongylus abstrusus first stage larvae with the Baermann's examination. Nevertheless, molecular assays have shown higher diagnostic performances compared to copromicroscopy. This study evaluated the usefulness of an A. abstrusus species-specific PCR on different biological samples collected in clinical settings from 100 privately-owned cats in Italy (n. 60) and Greece (n. 40). A fecal sample was collected from each animal and a pharyngeal swab was also obtained for cats from Italy. All stool samples were subjected to flotation and Baermann's test. The cats were categorized in three groups based on the results of copromicroscopy, i.e., Group A (n. 50 cats with A. abstrusus infection regardless of positivity for other helminths), Group B (n. 25 cats negative for A. abstrusus but positive for at least one of any other helminth), Group C (n. 25 cats negative for any helminth). DNA was extracted from individual aliquots of feces, flotation supernatant, Baermann's sediment and the pharyngeal swab and then subjected to a PCR specific for A. abstrusus. At least one fecal aliquot or the pharyngeal swab scored positive by the A. abstrusus-specific PCR for 48/50 (96%) cats enrolled in Group A; in particular, 38/50 (76%), 35/50 (70%), 41/50 (82%) and 21/25 (84%) DNA extracts from feces, flotation supernatant, Baermann's sediment and pharyngeal swabs were positive by PCR. These results confirm that molecular tools are highly sensitive and specific and indicate that pharyngeal swabs are the most suitable sample for molecular analysis in clinical settings
    • …
    corecore