71 research outputs found

    Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix

    Get PDF
    Current trends in optical sensors, such as miniaturization, flexibility and enhanced sensitivity, are indicating a new chemical route for the development of advanced multifunctional materials for optical applications. Those chemical technologies, which can be more easily customized and allows the inclusion of multiple functionalities within a unique preparation step, are bound to be progressively more and more applied to the preparation of optical materials.In this perspective, the sol-gel technology certainly represents one of the most promising chemical strategies, thanks to numerous advantages mainly related to simplicity and mild operative conditions. It enables creating a glass-like porous structure at room temperature by a two-step acid or base catalyzed reaction involving hydrolysis and condensation, starting with metal alkoxides M(OR)4, which transforms into a rigid three-dimensional metal-oxide network (Brinker, 1990). The sol\u2013gel process has been proved to be flexible enough for an efficient incorporation of organic polymer chains that can behave as flexible links between the metal-oxide domains in the inorganic network, in particular when they are bearing reactive groups that can be involved in the hydrolysis\u2013condensation reactions. The resulting materials are known as organic\u2013inorganic hybrids (Schmidt, 2000), also commonly designated as ceramers due to the combination of the properties of ceramics (high modulus, thermal stability and low coefficient of thermal expansion) with those of organic polymers (high ductility, molecular flexibility and low temperature processing). These materials are often also known as phase-interconnected nanocomposites because of the high level of interconnection between the two phases with domain phase sizes approaching the nanometer scale. Ceramers have a huge potential for application in a variety of advanced technologies (Eckert, 2001; Sanchez, 2011; Kickelkick, 2006), both as structural materials and functional materials, such as catalyst supports, protective coatings (Messori, 2003, 2004a); Toselli, 2007; Fabbri, 2008), sensors (Rovati, 2011; Fabbri, 2011), and active glasses.Optical fiber sensors are traditionally obtain by fully-inorganic sol-gel process that allows the creation of Si-O-Si linkages between the silica core of the optical fiber and the silica porous matrix deriving from the jellification of the sensitive dye-doped colloidal suspension (Cao, 2005). However, this approach cannot be easily applied in the case of plastic optical fibers, due to the ineffective interaction between the organic PMMA optical fiber core (Lin, 2000).The approach proposed in this work consists in the fabrication of a pH sensor based on an organic-inorganic hybrid matrix obtained by a sol-gel process, doped with a pH sensitive indicator, to be applied at the tip of plastic optical fibers. Inside the sensitive element, the organic part of the hybrid glass, polyethylene oxide (PEO), plays a multiple role: (i) it allows good adhesion between the plastic optical fiber and the whole sensitive element; (ii) its weak hydrophilicity permits to tune the kinetic of response of the sensor by influencing thediffusion rate of the analyte inside the porous matrix and its interaction with the indicator; (iii) its nature of organic compound allows better physical and chemical interactions with the organic pH indicator dispersed in the hybrid matrix, thus reducing problems of leaching and enhancing the response rate of the sensor

    Continuous haematic pH monitoring in extracorporeal circulation using a disposable florescence sensing element.

    Get PDF
    During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques

    Continuous haematic pH monitoring in extracorporeal circulation using a disposable florescence sensing element.

    Get PDF
    During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques

    Construction and evaluation of a disposable pH sensor based on a large core plastic optical fiber

    Get PDF
    The fabrication and characterization of a disposable optical fiber sensor for the detection of pH in the range 5-8 are described. The sensing element is a drop of sol-gel hybrid material containing phenol red and deposited onto the tip of a large core plastic optical fiber. This fiber is also exploited for the optical interrogation. This probe can be used as a disposable part of a measuring system. The dynamic range and temporal response of the sensor are here investigated

    Disposable Fluorescence Optical pH Sensor for Near Neutral Solutions

    Get PDF
    The design, development and performance evaluation of a fluorescence-based pH sensor for on-line measurements is presented. The pKa of the sensing element has been calculated to be 7.9, thus the sensor is suitable for measurement of near neutral solutions. The sensor consists of a low-cost disposable polymer sensing probe, in contact with the solution under test, interrogated by an optoelectronic transduction system. The pH sensitive dye is based on fluorescein O-methacrylate, which has been covalently linked to a hydrogel matrix, realized through the use of HEMA (2-hydroxyethyl methacrylate), HDDA (1,6-hexanediol diacrylate) and PEGDA (polyethylene glycol diacrylate). The optical interrogation setup, together with the electronics, has been developed to acquire and process the fluorescence signal. The sensor works over a pH range between 6.5 and 9.0. In the range between 7.0 and 8.0, the sensor shows a linear behavior with a maximum linearity error of 5%. Thanks to the good performance of the sensing element and transduction system, the short term drift of the reading (measured over 40 min) is lower than 0.15%. The measuring system also exhibits good performance in terms of response time and reproducibility

    Enhancing the scratch resistance of polycarbonate with poly(ethylene oxide)-silica hybrid coatings

    Get PDF
    Scratch-resistant coatings for bisphenol-A polycarbonate sheets were obtained by the sol–gel synthesis of an organic–inorganic hybrid system based on poly(ethylene oxide) and silica. The organic–inorganic hybrids were thermally cured into hard transparent coatings by using conventional and microwave (MW) ovens. Both techniques proved to be equally efficient in promoting the system’s crosslinking, as evaluated by 29Si MAS-NMR. The MW-assisted curing, however, was much faster. Photoelasticity analysis showed that MW-assisted curing causes localized overheating of the samples, inducing a state of residual plane stresses that bring about dimensional instability of the coated material. Instrumented scratch tests for the coated samples revealed an increase of 1 order of magnitude in the minimal load at which a scratch track appears on the sample surface. However, the friction coefficient values for samples with thermally cured coatings were lower than those produced by MW-assisted curing

    Hydrophobic and Oleophobic Coatings Based on Perfluoropolyether/Silica Hybrids by the Sol-Gel Method

    Get PDF
    Glass substrates were spin-coated with a perfluoropolyether oligomer based organic-inorganic hybrid material, and prepared by the sol-gel process. Contact angle analysis and atomic force microscopic analysis were carried out to characterize the surface of the prepared coatings. All systems exhibited strong hydrophobic and oleopophobic characteristics. The wettability behavior was found to be almost independent of both molecular weight and functionality of the fluorinated oligomer. The low values obtained for the contact angle and surface tension indicate that surface segregation of perfluoropolyether segments is likely to take place within the network. On the basis of these results and the high quality of the obtained coatings, these materials could be used as functional coatings to impart water and oleo-repellent characteristics to glasses and other similar substrates

    Antidepressant and antipsychotic use in an Italian pediatric population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The safety and effectiveness of psychotropic drug use in the paediatric population is widely debated, in particular because of the lack of data concerning long term effects.</p> <p>In Italy the prevalence of psychotropic drug prescriptions increased in the early 2000s and decreased afterwards. In such a context, a study with the aim to estimate the incidence and prevalence of psychotropic drug prescription in the paediatric population and to describe diagnostic and therapeutic approaches was performed.</p> <p>Methods</p> <p>The study population was composed of 76,000 youths less than 18 years and living in the area covered by the local health unit of Verona, Italy. The data source was the Verona local health unit's administrative prescription database. Prevalence and incidence of antidepressant and/or antipsychotic drug prescriptions in the 2004-2008 period were estimated. Children and adolescents receiving antidepressant and/or antipsychotic drug prescriptions between 1 January 2005 and 31 December 2006 were identified and questionnaires were sent to the prescribers with the aim to collect data concerning diagnostic and therapeutic approaches, and care strategies.</p> <p>Results</p> <p>The prevalence of psychotropic drug prescriptions did not change in the 2004-2008 period, while incidence slightly increased (from 7.0 in 2005 to 8.3 per 10,000 in 2008). Between 1 January 2005 and 31 December 2006, 111 youths received at least one psychotropic drug prescription, 91 of whom received antidepressants. Only 28 patients attended child and adolescent psychiatry services. Information concerning diagnostic and therapeutic approaches, and care strategies was collected for 52 patients (47%). Anxiety-depressive syndrome and attention disorders were the diseases for which psychotropic drugs were most commonly prescribed. In all, 75% youths also received psychological support and 20% were prescribed drugs for 2 or more years.</p> <p>Conclusions</p> <p>Despite the low drug prescription prevalence, the finding that most children were not cared for by child and adolescent psychiatric services is of concern and calls for a systematic, continuous monitoring of psychopharmacological treatments.</p

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P &lt; .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients

    Development of a low-cost pH sensor based on plastic optical fibers

    No full text
    The goal of this study is to develop the technology to achieve pH sensing using low-cost polymeric optical fibers. The tip of a low-cost plastic optical fiber is covered by a sensitive dye entrapped in an organic-inorganic hybrid matrix obtained by solgel process. The behaviors of this sensing arrangement have been investigated for a specific dye, namely Phenol Red
    corecore