80 research outputs found

    Contraction, cation oxidation state and size effects in cerium oxide nanoparticles

    Get PDF
    An accurate description of the structural and chemical modifications of cerium oxide nanoparticles (NPs) is mandatory for understanding their functionality in applications. In this work we investigate the relation between local atomic structure, oxidation state, defectivity and size in cerium oxide NPs with variable diameter below 10 nm, using x-ray absorption fine structure analysis in the near and extended energy range. The NPs are prepared by physical methods under controlled conditions and analyzed in morphology and crystalline quality by high resolution transmission electron microscopy. We resolve here an important question on the local structure of cerium oxide NPs: we demonstrate a progressive contraction in the Ce-O interatomic distance with decreasing NP diameter and we relate the observed effect to the reduced dimensionality. The contraction is not significantly modified by inducing a 4%-6% higher Ce3+ concentration through thermal annealing in high vacuum. The consequences of the observed average cation-anion distance contraction on the properties of the NPs are discussed

    Role of interface and morphology in the magnetic behaviour of perpendicular thin films based on L10 FePt

    Get PDF
    FePt L10 ordered alloy is a promising material for high-density magnetic recording, since it allows the ferromagnetic stability in particles of few nanometers. Here we present our recent studies on the correlation between magnetic and morphological/interfacial properties of FePt -based thin films, nanostructures, and nano-composite bilayers. L10 FePt (001) epitaxial thin films with high structural quality were grown on (100) MgO by sputtering r.f., using the alternate-layer deposition method. By playing with growth temperature on the one hand and post-annealing temperature and time on the other, we have been able to finely control epitaxy, structural order, and morphology from 3D laterally confined structures to continuous film, with desired grain size. In particular we have been able to decrease grain size and to optimise magnetic properties (increase of anisotropy/coercivity ratio) at the same time, by post-annealing in situ [1]. Laterally confined magnetic structures were also obtained by focused ion beam (FIB). We have shown that for suitable Ga+ doses (1?1014 ion/cm2), it is possible to transform the L10 ordered phase to the A1 disordered one, without affecting morphology, giving rise to substantial modifications of magnetic properties from hard to soft. Perpendicular 2D magnetic patterns (dots, stripes) in a soft easy-plane matrix were realized in films of continuous morphology [2]. FePt L10 has also been exploited as the hard layer of nanostructured hard-soft nanocomposite bilayers. The exploitation of the exchange-coupling between hard and soft layers in exchange-coupled media represents a possible approach to overcome the so-called "recording trilemma" [3]. The samples were prepared by growing a magnetically soft Fe layer (2 and 3.5 nm) over a hard FePt(001) layer (10 nm). Three bilayers series have been grown based on FePt epitaxial layers with high degree of chemical order (S≥0.76) and different morphologies, corresponding to different interface characteristics. The resulting hard layer anisotropy is high (K>1?107 erg/cm3), and the coercivity is increased by the grains separation (from 1.7 to 3 T). In the Fe/FePt bilayers the coercivity HC is strongly reduced compared to the hard layer value (HC/HChard down to 0.37), indicating that high anisotropy perpendicular systems with moderate coercivity can be obtained [4]. Moreover, the control of the interface morphology allows to modify the magnetic regime at fixed Fe thickness (Rigid Magnet to Exchange-Spring), due to the nanoscale structure effect on the hard/soft coupling, and to tailor the hysteresis loop characteristics

    Nanoparticle Langmuir-Blodgett Arrays for Sensing of CO and NO2 Gases

    Get PDF
    Metal oxide sensors with active Fe2O3 and CoFe2O4 nanoparticle arrays were studied. Sensing nanoparticle films from 1, 2, 4 or 7 monolayers were deposited by Langmuir-Blodgett technique. Sensors are formed on the alumina substrates equipped with heating meander. Langmuir-Blodgett layers were heated or UV irradiated to remove the insulating surfactant. Sensing properties were studied towards CO or NO2 gases in concentrations between 0.5 and 100 ppm in mixture with the dry air. Best response values Igas/Iair were obtained with CoFe2O4 device being 3 for 100 ppm of CO and with Fe2O3 device being (38)-1 for 0.5 ppm of NO2

    Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    Get PDF
    Films of magnetic Ni@NiO core-shell nanoparticles (NPs, core diameter d\ua0 45\ua012 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core-shell NPs with desired magnetic properties

    Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Get PDF
    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented

    Structure and Morphology of Silver Nanoparticles on the (111) Surface of Cerium Oxide

    Get PDF
    The structure of Ag nanoparticles of different size, supported on the cerium oxide (111) surface, was investigated by X-ray absorption fine structure at the Ag K-edge. The results of the data analysis in the near and extended energy range are interpreted with the help of the results obtained by X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements and allow to obtain a detailed atomic scale description of the model system investigated. The Ag nanoparticles have an average size of a few tens of angstroms, which increases with increasing deposited Ag amount. The nanoparticles show a slight tendency to nucleate at the step edges between different cerium oxide layers and they have a face centered cubic structure with an Ag-Ag interatomic distance contracted by 3-4% with respect to the bulk value. The interatomic distance contraction is mainly ascribed to dimensionality induced effects, while epitaxial effects have a minor role. The presence of Ag-O bonds at the interface between the nanoparticles and the supporting oxide is also detected. The Ag-O interatomic distance decreases with decreasing nanoparticle size
    • …
    corecore