446 research outputs found

    A theoretical model of neuronal population coding of stimuli with both continuous and discrete dimensions

    Full text link
    In a recent study the initial rise of the mutual information between the firing rates of N neurons and a set of p discrete stimuli has been analytically evaluated, under the assumption that neurons fire independently of one another to each stimulus and that each conditional distribution of firing rates is gaussian. Yet real stimuli or behavioural correlates are high-dimensional, with both discrete and continuously varying features.Moreover, the gaussian approximation implies negative firing rates, which is biologically implausible. Here, we generalize the analysis to the case where the stimulus or behavioural correlate has both a discrete and a continuous dimension. In the case of large noise we evaluate the mutual information up to the quadratic approximation as a function of population size. Then we consider a more realistic distribution of firing rates, truncated at zero, and we prove that the resulting correction, with respect to the gaussian firing rates, can be expressed simply as a renormalization of the noise parameter. Finally, we demonstrate the effect of averaging the distribution across the discrete dimension, evaluating the mutual information only with respect to the continuously varying correlate.Comment: 20 pages, 10 figure

    Reading spike timing without a clock: intrinsic decoding of spike trains

    Get PDF
    The precise timing of action potentials of sensory neurons relative to the time of stimulus presentation carries substantial sensory information that is lost or degraded when these responses are summed over longer time windows. However, it is unclear whether and how downstream networks can access information in precise time-varying neural responses. Here, we review approaches to test the hypothesis that the activity of neural populations provides the temporal reference frames needed to decode temporal spike patterns. These approaches are based on comparing the single-trial stimulus discriminability obtained from neural codes defined with respect to network-intrinsic reference frames to the discriminability obtained from codes defined relative to the experimenter's computer clock. Application of this formalism to auditory, visual and somatosensory data shows that information carried by millisecond-scale spike times can be decoded robustly even with little or no independent external knowledge of stimulus time. In cortex, key components of such intrinsic temporal reference frames include dedicated neural populations that signal stimulus onset with reliable and precise latencies, and low-frequency oscillations that can serve as reference for partitioning extended neuronal responses into informative spike patterns

    Information Carried by Population Spike Times in the Whisker Sensory Cortex can be Decoded Without Knowledge of Stimulus Time

    Get PDF
    Computational analyses have revealed that precisely timed spikes emitted by somatosensory cortical neuronal populations encode basic stimulus features in the rat's whisker sensory system. Efficient spike time based decoding schemes both for the spatial location of a stimulus and for the kinetic features of complex whisker movements have been defined. To date, these decoding schemes have been based upon spike times referenced to an external temporal frame – the time of the stimulus itself. Such schemes are limited by the requirement of precise knowledge of the stimulus time signal, and it is not clear whether stimulus times are known to rats making sensory judgments. Here, we first review studies of the information obtained from spike timing referenced to the stimulus time. Then we explore new methods for extracting spike train information independently of any external temporal reference frame. These proposed methods are based on the detection of stimulus-dependent differences in the firing time within a neuronal population. We apply them to a data set using single-whisker stimulation in anesthetized rats and find that stimulus site can be decoded based on the millisecond-range relative differences in spike times even without knowledge of stimulus time. If spike counts alone are measured over tens or hundreds of milliseconds rather than milliseconds, such decoders are much less effective. These results suggest that decoding schemes based on millisecond-precise spike times are likely to subserve robust and information-rich transmission of information in the somatosensory system

    Synthesizing realistic neural population activity patterns using generative adversarial networks

    Get PDF
    The ability to synthesize realistic patterns of neural activity is crucial for studying neural information processing. Here we used the Generative Adversarial Networks (GANs) framework to simulate the concerted activity of a population of neurons. We adapted the Wasserstein-GAN variant to facilitate the generation of unconstrained neural population activity patterns while still benefiting from parameter sharing in the temporal domain. We demonstrate that our proposed GAN, which we termed Spike-GAN, generates spike trains that match accurately the first- and second-order statistics of datasets of tens of neurons and also approximates well their higher-order statistics. We applied Spike-GAN to a real dataset recorded from salamander retina and showed that it performs as well as state-of-the-art approaches based on the maximum entropy and the dichotomized Gaussian frameworks. Importantly, Spike-GAN does not require to specify a priori the statistics to be matched by the model, and so constitutes a more flexible method than these alternative approaches. Finally, we show how to exploit a trained Spike-GAN to construct’importance maps’ to detect the most relevant statistical structures present in a spike train. Spike-GAN provides a powerful, easy-to-use technique for generating realistic spiking neural activity and for describing the most relevant features of the large-scale neural population recordings studied in modern systems neuroscience

    Phase Nanoengineering via Thermal Scanning Probe Lithography and Direct Laser Writing

    Get PDF
    Nanomaterials derive their electronic, magnetic, and optical properties from their specific nanostructure. In most cases, nanostructured materials and their properties are defined during the materials growth, and nanofabrication techniques, such as lithography, are employed subsequently for device fabrication. Herein, a perspective is presented on a different approach for creating nanomaterials and devices where, after growth, advanced nanofabrication techniques are used to directly nanostructure condensed matter systems, by inducing highly controlled, localized, and stable changes in the electronic, magnetic, or optical properties. Then, advantages, limitations, applications in materials science and technology are highlighted, and future perspectives are discussed
    • …
    corecore