7 research outputs found
Fires can benefit plants by disrupting antagonistic interactions
Fire has a key role in the ecology and evolution of many ecosystems, yet its effects on plant–insect interactions are poorly understood. Because interacting species are likely to respond to fire differently, disruptions of the interactions are expected. We hypothesized that plants that regenerate after fire can benefit through the disruption of their antagonistic interactions. We expected stronger effects on interactions with specialist predators than with generalists. We studied two interactions between two Mediterranean plants (Ulex parviflorus, Asphodelus ramosus) and their specialist seed predators after large wildfires. In A. ramosus we also studied the generalist herbivores. We sampled the interactions in burned and adjacent unburned areas during 2 years by estimating seed predation, number of herbivores and fruit set. To assess the effect of the distance to unburned vegetation we sampled plots at two distance classes from the fire perimeter. Even 3 years after the fires, Ulex plants experienced lower seed damage by specialists in burned sites. The presence of herbivores on Asphodelus decreased in burned locations, and the variability in their presence was significantly related to fruit set. Generalist herbivores were unaffected. We show that plants can benefit from fire through the disruption of their antagonistic interactions with specialist seed predators for at least a few years. In environments with a long fire history, this effect might be one additional mechanism underlying the success of fire-adapted plants
Employing sea-level rise scenarios to strategically select sea turtle nesting habitat important for long-term management at a temperate breeding area
Management strategies to protect endangered species primarily focus on safeguarding habitats currently perceived as important (due to high-density use, rarity or contribution to the biological cycle), rather than sites of future ecological importance. This discrepancy is particularly relevant for species inhabiting beaches and coastal areas that may be lost due to sea-level rise over the next 100 years through climate change. Here, we modelled four sea-level rise (SLR) scenarios (0.2, 0.6, 0.9 and 1.3 m) to determine the future vulnerability and viability of nesting habitat (six distinct nesting beaches totalling about 6 km in length) at a key loggerhead sea turtle (Caretta caretta) rookery (Zakynthos, Greece) in the Mediterranean. For each of the six nesting beaches, we identified (1) the area of beach currently used by turtles, (2) the area of the beach anticipated to become inundated under each SLR, (3) the area of beach anticipated to become unsuitable for nesting under each SLR, (4) the potential for habitat loss under the examined SLR, and (5) the extent to which the beaches may shift in relation to natural (i.e. cliffs) and artificial (i.e. beach front development) physical barriers. Even under the most conservative 0.2 m SLR scenario, about 38% (range: 31–48%) total nesting beach area would be lost, while an average 13% (range: 7–17%) current nesting beach area would be lost. About 4 km length of nesting habitat (representing 85% of nesting activity) would be lost under the 0.9 m scenario, because cliffs prevent landward beach migration. In comparison, while the other 2 km of beach (representing 15% nests) is also at high risk, it has the capacity for landward migration, because of an adjoining sand-dune system. Therefore, managers should strengthen actions on this latter area, as a climatically critical safeguard for future sea turtle nesting activity, in parallel to regularly assessing and revising measures on the current high-use nesting habitats of this important Mediterranean loggerhead population
A global gap analysis of sea turtle protection coverage
Although the number and extent of protected areas (PAs) are continuously increasing, their coverage of global biodiversity, as well as criteria and targets that underline their selection, warrants scrutiny. As a case study, we use a global dataset of sea turtle nesting sites (. n=. 2991) to determine the extent to which the existing global PA network encompasses nesting habitats (beaches) that are vital for the persistence of the seven sea turtle species. The majority of nesting sites (87%) are in the tropics, and are mainly hosted by developing countries. Developing countries contain 82% nesting sites, which provide lower protection coverage compared to developed countries. PAs encompass 25% of all nesting sites, of which 78% are in marine PAs. At present, most nesting sites in PAs with IUCN ratification receive high protection. We identified the countries that provide the highest and lowest nesting site protection coverage, and detected gaps in species-level protection effort within countries. No clear trend in protection coverage was found in relation to gross domestic product, the Global Peace Index or sea turtle regional management units; however, countries in crisis (civil unrest, war or natural catastrophes) provided slightly higher protection coverage of all countries. We conclude that global sea turtle resilience against threats spanning temperate to tropical regions require representative PA coverage at the species level within countries. This work is anticipated to function as a first step towards identifying specific countries or regions that should receive higher conservation interest by national and international bodies. © 2014 Elsevier Ltd
Auditory recognition of familiar and unfamiliar subjects with wind turbine noise
Considering the wide growth of the wind turbine market over the last decade as well as their increasing power size, more and more potential conflicts have arisen in society due to the noise radiated by these plants. Our goal was to determine whether the annoyance caused by wind farms is related to aspects other than noise. To accomplish this, an auditory experiment on the recognition of wind turbine noise was conducted to people with long experience of wind turbine noise exposure and to people with no previous experience to this type of noise source. Our findings demonstrated that the trend of the auditory recognition is the same for the two examined groups, as far as the increase of the distance and the decrease of the values of sound equivalent levels and loudness are concerned. Significant differences between the two groups were observed as the distance increases. People with wind turbine noise experience showed a higher tendency to report false alarms than people without experience
Tuber size variation and organ preformation constrain growth responses of a spring geophyte
Contains fulltext :
33119.pdf (publisher's version ) (Closed access