9 research outputs found

    Morphological phenotypic dispersion of garlic cultivars by cluster analysis and multidimensional scaling

    Get PDF
    Multivariate techniques have become a useful tool for studying the phenotypic diversity of Germplasm Bank accessions, since they make it possible to combine a variety of different information from these accessions. This study aimed to characterize the phenotypic dispersion of garlic (Allium sativum L.) using two multivariate techniques with different objective functions. Twenty accessions were morphologically characterized for bulb diameter, length, and weight; number of cloves per bulb; number of leaves per plant; and leaf area. Techniques based on generalized quadratic distance of Mahalanobis, UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering, and nMDS (nonmetrric MultiDimensional Scaling) were applied and the relative importance of variables quantified. The two multivariate techniques were capable of identifying cultivars with different characteristics, mainly regarding their classification in subgroups of common garlic or noble garlic, according to the number of cloves per bulb. The representation of the phenotypic distance of cultivars by multidimensional scaling was slightly more effective than that with UPGMA clustering

    Soybean

    No full text

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore