10 research outputs found

    The Efficacy of Ultrasonic Pest Repellent Devices against the Australian Paralysis Tick, Ixodes holocyclus (Acari: Ixodidae)

    No full text
    Ultrasonic pest repellers are often promoted as a means of protecting people and pets from the bites of hematophagous arthropods, such as ticks. However, to date, there has been no published research on the effectiveness of these devices against the Australian paralysis tick, Ixodes holocyclus Neumann. The purpose of this study was to test the effectiveness of nine ultrasonic devices against female I. holocyclus. Two arenas were constructed, one for the test (with the ultrasonic device) and one for the control (no device). Each arena had a test and an escape chamber, connected by a corridor. Twenty ticks were placed in each test chamber. After the ultrasonic device was operated for 1 h, the number of ticks in both chambers was recorded. Ten replicates were conducted for each device. The average number of ticks that moved from the test to the escape chamber was greater in all the test arenas, with three devices being statistically different from the control. However, the highest percent of ticks that escaped was only 19.5%. This amount is insufficient to offer adequate protection against tick bites and this study adds further weight to previous investigations that ultrasonic devices should not be employed in pest management

    Synergistic Behavioral Response Effect of Mixtures of <i>Andrographis paniculata</i>, <i>Cananga odorata</i>, and <i>Vetiveria zizanioides</i> against <i>Aedes aegypti</i> (Diptera: Culicidae)

    No full text
    Each binary mixture formulation of Vetiveria zizanioides (L.) Nash (VZ) with Andrographis paniculata (Burm.f.) Wall. ex Nees (AP) or Cananga odorata (Lam.) Hook.f. & Thomson (CO) and AP with CO at 1:1, 1:2, 1:3, and 1:4 ratios (v:v) was investigated for behavioral responses on laboratory and field strains of Aedes aegypti. Irritant and repellent activities of each formulation were compared with N,N-diethyl-3-methylbenzamide (DEET) using an excito-repellency test system. The result demonstrated that the mixture of VZ:AP in all combination ratios was the most effective in inducing an irritancy response against the laboratory strain (56.57–73.33%). The highest percentage of escaped mosquitoes exposed to the mixture at a 1:4 ratio (73.33%) was significantly different from DEET (26.67%) (p p < 0.05). There was a weak non-contact escape pattern in all combinations of VZ:CO against the laboratory strains (6.67–31.67%). These findings could lead to the further development of VZ and AP as active ingredients in a repellent that could advance to human use trials

    Forced egg laying method to establish F1 progeny from field populations and laboratory strains of Anopheles mosquitoes (Diptera: Culicidae) in Thailand

    No full text
    Successful monitoring of physiological resistance of malaria vectors requires about 150 female mosquitoes for a single set of tests. In some situations, the sampling effort is insufficient due to the low number of field-caught mosquitoes. To address this challenge, we demonstrate the feasibility of using the forced oviposition method for producing F-1 from field-caught Anopheles mosquitoes. A total of 430 and 598 gravid Anopheles females from four laboratory strains and five field populations, respectively, were tested. After blood feeding, gravid mosquitoes were individually introduced into transparent plastic vials, containing moistened cotton balls topped with a 4 cm(2) piece of filter paper. The number of eggs, hatching larvae, pupation, and adult emergence were recorded daily. The mean number of eggs per female mosquito ranged from 39.3 for Anopheles cracens to 93.6 for Anopheles dirus in the laboratory strains, and from 36.3 for Anopheles harrisoni to 147.6 for Anopheles barbirostris s.l. in the field populations. A relatively high egg hatching rate was found in An. dirus (95.85%), Anopheles minimus (78.22%), and An. cracens (75.59%). Similarly, a relatively high pupation rate was found for almost all test species ranging from 66% for An. minimus to 98.7% for Anopheles maculatus, and lowest for An. harrisoni (43.9%). Highly successful adult emergence rate was observed among 85-100% of pupae that emerged in all tested mosquito populations. The in-tube forced oviposition method is a promising method for the production of sufficient F-1 progeny for molecular identification, vector competence, insecticide resistance, and bioassay studies

    Repellency and Contact Irritancy Responses of Aedes aegypti (Diptera: Culicidae) Against Deltamethrin and Permethrin: A Cross-Regional Comparison

    No full text
    Control strategies exploiting the innate response of mosquitoes to chemicals are urgently required to complement existing traditional approaches. We therefore examined the behavioral responses of 16 field strains of Aedes aegypti (L.) from two countries, to deltamethrin and permethrin by using an excito-repellency (ER) test system. The result demonstrated that the escape percentage of Ae. aegypti exposed to pyrethroids did not vary significantly between the two countries in both contact and noncontact treatment despite the differing epidemiological patterns. Deltamethrin (contact: 3.57 ± 2.06% to 31.20 ± 10.71%; noncontact: 1.67 ± 1.67% to 17.31 ± 14.85%) elicited relatively lower responses to field mosquitoes when compared with permethrin (contact: 16.15 ± 4.07% to 74.19 ± 4.69%; noncontact: 3.45 ± 2.00% to 41.59 ± 6.98%) in contact and noncontact treatments. Compared with field strains, the mean percentage of escaping laboratory susceptible strain individuals were significantly high after treatments (deltamethrin contact: 72.26 ± 6.95%, noncontact: 61.10 ± 12.31%; permethrin contact: 78.67 ± 9.67%, noncontact: 67.07 ± 7.02%) and the escaped individuals spent significantly shorter time escaping from the contact and noncontact chamber. The results indicated a significant effect of resistance ratio on mean escape percentage, but some strains varied idiosyncratically compared to the increase in insecticide resistance. The results also illustrated that the resistance ratio had a significant effect on the mortality in treatments. However, the mortality in field mosquitoes that prematurely escaped from the treated contact chamber or in mosquitoes that stayed up to the 30-min experimental period showed no significant difference

    Comparing Light—Emitting—Diodes Light Traps for Catching Anopheles Mosquitoes in a Forest Setting, Western Thailand

    No full text
    Light traps are a common method for attracting and collecting arthropods, including disease vectors such as mosquitoes. Various types of traps have been used to monitor mosquitoes in a forest in Western Thailand. In this study, four Light Emitting Diodes (LED) light sources (UV, blue, green, and red) and two fluorescent lights (white and UV) were used to trap nocturnal adult mosquitoes. These traps were used with light alone and not any additional attractant. The experiment was conducted from 18:00 to 06:00 h. on six consecutive nights, every two months, across dry, wet, and cold seasons. All specimens were first identified by morphological features and subsequently confirmed by using PCR. We collected a total of 873 specimens of 31 species in four genera, Anopheles, Aedes, Culex, and Armigeres. Anopheles harrisoni was the predominant species, followed by Aedes albopictus, Culex brevipalpis, Culex nitropunctatus, and Armigeres (Leicesteria) longipalpis. UV fluorescent light was the most effective light source for capturing forest mosquitoes, followed by UV LED, blue LED, green LED, white fluorescent, and red LED. The optimal times for collection were from 21:00 to 03:00 h in the dry season. Our results demonstrate that appropriate sampling times and light sources should be selected for optimal efficiency in vector surveillance programs

    Effects of piperonyl butoxide synergism and cuticular thickening on the contact irritancy response of field Aedes aegypti (Diptera: Culicidae) to deltamethrin

    No full text
    Background: Exploiting indoor-resting mosquitoes' innate behavioral responses to commonly used insecticide is crucial in vector control programs. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) treated with pyrethroids have become widely used for controlling dengue fever vectors. The present study tested the effects of piperonyl butoxide (PBO) synergism and cuticular thickening on the contact irritancy response of field A. aegypti (Diptera: Culicidae) to deltamethrin in Taiwan and Thailand. Results: The escape response of field mosquitoes treated with PBO was significantly elicited, with an escape percentage increase between 2- and 10-fold. In addition, the escape time was significantly lower in PBO-pretreated mosquitoes compared with field mosquitoes treated with deltamethrin alone. PBO-pretreated mosquitoes from seven out of 11 field strains exhibited a knockdown percentage of 11.23-54.91%, significantly higher than that of mosquitoes in corresponding strains treated with deltamethrin only. The Annan, Zhongxi, Sanmin, and North strains exhibited weak knockdown responses (≤3.75%). The mortality of PBO-pretreated field mosquitoes increased 2- to 75-fold compared with those treated with deltamethrin alone (mortality: 0-6.70%). Furthermore, the effect of cuticular thickness on the escape response of field mosquitoes was significant, that is, the escape response marginally increased inversely to cuticular thickness. By contrast, cuticular thickness was not significantly associated with knockdown or mortality percentage. Conclusion: Irritant behavior in mosquitoes was significantly elicited by PBO synergism. PBO incorporating deltamethrin IRS or LLINs may be effective for controlling dengue fever vectors. © 2021 Society of Chemical Industry
    corecore