42 research outputs found

    Genetic constraint at single amino acid resolution in protein domains improves missense variant prioritisation and gene discovery

    Get PDF
    : Background: One of the major hurdles in clinical genetics is interpreting the clinical consequences associated with germline missense variants in humans. Recent significant advances have leveraged natural variation observed in large-scale human populations to uncover genes or genomic regions that show a depletion of natural variation, indicative of selection pressure. We refer to this as “genetic constraint”. Although existing genetic constraint metrics have been demonstrated to be successful in prioritising genes or genomic regions associated with diseases, their spatial resolution is limited in distinguishing pathogenic variants from benign variants within genes. Methods: We aim to identify missense variants that are significantly depleted in the general human population. Given the size of currently available human populations with exome or genome sequencing data, it is not possible to directly detect depletion of individual missense variants, since the average expected number of observations of a variant at most positions is less than one. We instead focus on protein domains, grouping homologous variants with similar functional impacts to examine the depletion of natural variations within these comparable sets. To accomplish this, we develop the Homologous Missense Constraint (HMC) score. We utilise the Genome Aggregation Database (gnomAD) 125 K exome sequencing data and evaluate genetic constraint at quasi amino-acid resolution by combining signals across protein homologues. Results: We identify one million possible missense variants under strong negative selection within protein domains. Though our approach annotates only protein domains, it nonetheless allows us to assess 22% of the exome confidently. It precisely distinguishes pathogenic variants from benign variants for both early-onset and adult-onset disorders. It outperforms existing constraint metrics and pathogenicity meta-predictors in prioritising de novo mutations from probands with developmental disorders (DD). It is also methodologically independent of these, adding power to predict variant pathogenicity when used in combination. We demonstrate utility for gene discovery by identifying seven genes newly significantly associated with DD that could act through an altered-function mechanism. Conclusions: Grouping variants of comparable functional impacts is effective in evaluating their genetic constraint. HMC is a novel and accurate predictor of missense consequence for improved variant interpretation

    Effect of trimetazidine dihydrochloride therapy on exercise capacity in patients with nonobstructive hypertrophic cardiomyopathy: A randomized clinical trial

    Get PDF
    Importance: Hypertrophic cardiomyopathy causes limiting symptoms in patients, mediated partly through inefficient myocardial energy use. There is conflicting evidence for therapy with inhibitors of myocardial fatty acid metabolism in patients with nonobstructive hypertrophic cardiomyopathy. Objective: To determine the effect of oral therapy with trimetazidine, a direct inhibitor of fatty acid β-oxidation, on exercise capacity in patients with symptomatic nonobstructive hypertrophic cardiomyopathy. Design, Setting, and Participants: This randomized, placebo-controlled, double-blind clinical trial at The Heart Hospital, University College London Hospitals, London, United Kingdom was performed between May 31, 2012, and September 8, 2014. The trial included 51 drug-refractory symptomatic (New York Heart Association class ≥2) patients aged 24 to 74 years with a maximum left ventricular outflow tract gradient 50 mm Hg or lower and a peak oxygen consumption during exercise of 80% or less predicted value for age and sex. Statistical analysis was performed from March 1, 2016 through July 4, 2018. Interventions: Participants were randomly assigned to trimetazidine, 20 mg, 3 times daily (n = 27) or placebo (n = 24) for 3 months. Main Outcomes and Measures: The primary end point was peak oxygen consumption during upright bicycle ergometry. Secondary end points were 6-minute walk distance, quality of life (Minnesota Living with Heart Failure questionnaire), frequency of ventricular ectopic beats, diastolic function, serum N-terminal pro-brain natriuretic peptide level, and troponin T level. Results: Of 49 participants who received trimetazidine (n = 26) or placebo (n = 23) and completed the study, 34 (70%) were male; the mean (SD) age was 50 (13) years. Trimetazidine therapy did not improve exercise capacity, with patients in the trimetazidine group walking 38.4 m (95% CI, 5.13 to 71.70 m) less than patients in the placebo group at 3 months after adjustment for their baseline walking distance measurements. After adjustment for baseline values, peak oxygen consumption was 1.35 mL/kg per minute lower (95% CI, -2.58 to -0.11 mL/kg per minute; P = .03) in the intervention group after 3 months. Conclusions and Relevance: In symptomatic patients with nonobstructive hypertrophic cardiomyopathy, trimetazidine therapy does not improve exercise capacity. Pharmacologic therapy for this disease remains limited. Trial Registration: ClinicalTrials.gov identifier: NCT01696370

    CASCADE protocol: exploring current viral and host characteristics, measuring clinical and patient-reported outcomes, and understanding the lived experiences and needs of individuals with recently acquired HIV infection through a multicentre mixed-methods observational study in Europe and Canada

    Get PDF
    Introduction: Despite the availability of pre-exposure prophylaxis (PrEP) and antiretroviral therapy (ART), 21 793 people were newly diagnosed with HIV in Europe in 2019. The Concerted action on seroconversion to AIDS and death in Europe study aims to understand current drivers of the HIV epidemic; factors associated with access to, and uptake of prevention methods and ART initiation; and the experiences, needs and outcomes of people with recently acquired HIV. / Methods and analysis: This longitudinal observational study is recruiting participants aged ≥16 years with documented laboratory evidence of HIV seroconversion from clinics in Canada and six European countries. We will analyse data from medical records, self-administered questionnaires, semistructured interviews and participatory photography. We will assess temporal trends in transmitted drug resistance and viral subtype and examine outcomes following early ART initiation. We will investigate patient-reported outcomes, well-being, and experiences of, knowledge of, and attitudes to HIV preventions, including PrEP. We will analyse qualitative data thematically and triangulate quantitative and qualitative findings. As patient public involvement is central to this work, we have convened a community advisory board (CAB) comprising people living with HIV. / Ethics and dissemination: All respective research ethics committees have approval for data to contribute to international collaborations. Written informed consent is required to take part. A dissemination strategy will be developed in collaboration with CAB and the scientific committee. It will include peer-reviewed publications, conference presentations and accessible summaries of findings on the study’s website, social media and via community organisations

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson's Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Defining the causes of sporadic Parkinson’s disease in the global Parkinson’s genetics program (GP2)

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia.This research is supported by the Aligning Science Across Parkinson’s Initiative, the Intramural Research Program, National Institute on Aging, National Institutes of Health, Department of Health and Human Services, project ZO1 AG000949, and the Michael J. Fox Foundation for Parkinson’s Research. Data used in the preparation of this article were obtained from Global Parkinson’s Genetics Program (GP2). GP2 is funded by the Aligning Science Across Parkinson’s (ASAP) initiative and implemented by The Michael J. Fox Foundation for Parkinson’s Research (https://gp2.org). For a complete list of GP2 members see https://gp2.org.Peer reviewe

    A Phylogenetic Analysis of Human Immunodeficiency Virus Type 1 Sequences in Kiev: Findings Among Key Populations

    Get PDF
    Background: The human immunodeficiency virus (HIV) epidemic in Ukraine has been driven by a rapid rise among people who inject drugs, but recent studies have shown an increase through sexual transmission. Methods: Protease and reverse transcriptase sequences from 876 new HIV diagnoses (April 2013–March 2015) in Kiev were linked to demographic data. We constructed phylogenetic trees for 794 subtype A1 and 64 subtype B sequences and identified factors associated with transmission clustering. Clusters were defined as ≥2 sequences, ≥80% local branch support, and maximum genetic distance of all sequence pairs in the cluster ≤2.5%. Recent infection was determined through the limiting antigen avidity enzyme immunoassay. Sequences were analyzed for transmitted drug resistance mutations. Results Thirty percent of subtype A1 and 66% of subtype B sequences clustered. Large clusters (maximum 11 sequences) contained mixed risk groups. In univariate analysis, clustering was significantly associated with subtype B compared to A1 (odds ratio [OR], 4.38 [95% confidence interval {CI}, 2.56–7.50]); risk group (OR, 5.65 [95% CI, 3.27–9.75]) for men who have sex with men compared to heterosexual males; recent, compared to long-standing, infection (OR, 2.72 [95% CI, 1.64–4.52]); reported sex work contact (OR, 1.93 [95% CI, 1.07–3.47]); and younger age groups compared with age ≥36 years (OR, 1.83 [95% CI, 1.10–3.05] for age ≤25 years). Females were associated with lower odds of clustering than heterosexual males (OR, 0.49 [95% CI, .31–.77]). In multivariate analysis, risk group, subtype, and age group were independently associated with clustering (P < .001, P = .007, and P = .033, respectively). Eighteen sequences (2.1%) indicated evidence of transmitted drug resistance. Conclusions Our findings suggest high levels of transmission and bridging between risk groups

    Dosing and safety profile of aficamten in symptomatic obstructive hypertrophic cardiomyopathy: results from from SEQUOIA‐HCM

    Get PDF
    Background: Aficamten, a novel cardiac myosin inhibitor, reversibly reduces cardiac hypercontractility in obstructive hypertrophic cardiomyopathy. We present a prespecified analysis of the pharmacokinetics, pharmacodynamics, and safety of aficamten in SEQUOIA‐HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). Methods and Results: A total of 282 patients with obstructive hypertrophic cardiomyopathy were randomized 1:1 to daily aficamten (5–20 mg) or placebo between February 1, 2022, and May 15, 2023. Aficamten dosing targeted the lowest effective dose for achieving site‐interpreted Valsalva left ventricular outflow tract gradient &lt;30 mm Hg with left ventricular ejection fraction (LVEF) ≥50%. End points were evaluated during titration (day 1 to week 8), maintenance (weeks 8–24), and washout (weeks 24–28), and included major adverse cardiac events, new‐onset atrial fibrillation, implantable cardioverter‐defibrillator discharges, LVEF &lt;50%, and treatment‐emergent adverse events. At week 8, 3.6%, 12.9%, 35%, and 48.6% of patients achieved 5‐, 10‐, 15‐, and 20‐mg doses, respectively. Baseline characteristics were similar across groups. Aficamten concentration increased by dose and remained stable during maintenance. During the treatment period, LVEF decreased by −0.9% (95% CI, −1.3 to −0.6) per 100 ng/mL aficamten exposure. Seven (4.9%) patients taking aficamten underwent per‐protocol dose reduction for site‐interpreted LVEF &lt;50%. There were no treatment interruptions or heart failure worsening for LVEF &lt;50%. No major adverse cardiovascular events were associated with aficamten, and treatment‐emergent adverse events were similar between treatment groups, including atrial fibrillation. Conclusions: A site‐based dosing algorithm targeting the lowest effective aficamten dose reduced left ventricular outflow tract gradient with a favorable safety profile throughout SEQUOIA‐HCM

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations
    corecore