42 research outputs found
Microinjection of Xenopus Laevis Oocytes
Microinjection of Xenopus laevis oocytes followed by thin-sectioning electron microscopy (EM) is an excellent system for studying nucleocytoplasmic transport. Because of its large nucleus and high density of nuclear pore complexes (NPCs), nuclear transport can be easily visualized in the Xenopus oocyte. Much insight into the mechanisms of nuclear import and export has been gained through use of this system (reviewed by Panté, 2006). In addition, we have used microinjection of Xenopus oocytes to dissect the nuclear import pathways of several viruses that replicate in the host nucleus
Purification and Visualization of Influenza A Viral Ribonucleoprotein Complexes
The influenza A viral genome consists of eight negative-sense, single stranded RNA molecules, individually packed with multiple copies of the influenza A nucleoprotein (NP) into viral ribonulceoprotein particles (vRNPs). The influenza vRNPs are enclosed within the viral envelope. During cell entry, however, these vRNP complexes are released into the cytoplasm, where they gain access to the host nuclear transport machinery. In order to study the nuclear import of influenza vRNPs and the replication of the influenza genome, it is useful to work with isolated vRNPs so that other components of the virus do not interfere with these processes. Here, we describe a procedure to purify these vRNPs from the influenza A virus. The procedure starts with the disruption of the influenza A virion with detergents in order to release the vRNP complexes from the enveloped virion. The vRNPs are then separated from the other components of the influenza A virion on a 33-70% discontinuous glycerol gradient by velocity sedimentation. The fractions obtained from the glycerol gradient are then analyzed on via SDS-PAGE after staining with Coomassie blue. The peak fractions containing NP are then pooled together and concentrated by centrifugation. After concentration, the integrity of the vRNPs is verified by visualization of the vRNPs by transmission electron microscopy after negative staining. The glycerol gradient purification is a modification of that from Kemler et al. (1994)1, and the negative staining has been performed by Wu et al. (2007).
Molecular Architecture of the Yeast Nuclear Pore Complex: Localization of Nsp1p Subcomplexes
The nuclear pore complex (NPC), a supramolecular assembly of ∼100 different proteins (nucleoporins), mediates bidirectional transport of molecules between the cytoplasm and the cell nucleus. Extensive structural studies have revealed the three- dimensional (3D) architecture of Xenopus NPCs, and eight of the ∼12 cloned and characterized vertebrate nucleoporins have been localized within the NPC. Thanks to the power of yeast genetics, 30 yeast nucleoporins have recently been cloned and characterized at the molecular level. However, the localization of these nucleoporins within the 3D structure of the NPC has remain elusive, mainly due to limitations of preparing yeast cells for electron microscopy (EM). We have developed a new protocol for preparing yeast cells for EM that yielded structurally well-preserved yeast NPCs. A direct comparison of yeast and Xenopus NPCs revealed that the NPC structure is evolutionarily conserved, although yeast NPCs are 15% smaller in their linear dimensions. With this preparation protocol and yeast strains expressing nucleoporins tagged with protein A, we have localized Nsp1p and its interacting partners Nup49p, Nup57p, Nup82p, and Nic96p by immuno-EM. Accordingly, Nsp1p resides in three distinct subcomplexes which are located at the entry and exit of the central gated channel and at the terminal ring of the nuclear basket
Nucleoporin 153 Arrests the Nuclear Import of Hepatitis B Virus Capsids in the Nuclear Basket
Virtually all DNA viruses including hepatitis B viruses (HBV) replicate their genome inside the nucleus. In non-dividing cells, the genome has to pass through the nuclear pore complexes (NPCs) by the aid of nuclear transport receptors as e.g. importin β (karyopherin). Most viruses release their genome in the cytoplasm or at the cytosolic face of the NPC, as the diameter of their capsids exceeds the size of the NPC. The DNA genome of HBV is derived from reverse transcription of an RNA pregenome. Genome maturation occurs in cytosolic capsids and progeny capsids can deliver the genome into the nucleus causing nuclear genome amplification. The karyophilic capsids are small enough to pass the NPC, but nuclear entry of capsids with an immature genome is halted in the nuclear basket on the nuclear side of the NPC, and the genome remains encapsidated. In contrast, capsids with a mature genome enter the basket and consequently liberate the genome. Investigating the difference between immature and mature capsids, we found that mature capsids had to disintegrate in order to leave the nuclear basket. The arrest of a karyophilic cargo at the nuclear pore is a rare phenomenon, which has been described for only very few cellular proteins participating in nuclear entry. We analyzed the interactions causing HBV capsid retention. By pull-down assays and partial siRNA depletion, we showed that HBV capsids directly interact with nucleoporin 153 (Nup153), an essential protein of the nuclear basket which participates in nuclear transport via importin β. The binding sites of importin β and capsids were shown to overlap but capsid binding was 150-fold stronger. In cellulo experiments using digitonin-permeabilized cells confirmed the interference between capsid binding and nuclear import by importin β. Collectively, our findings describe a unique nuclear import strategy not only for viruses but for all karyophilic cargos
Effect of BMAP-28 Antimicrobial Peptides on Leishmania major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival
Protozoan parasites are the causative agent of much disease in tropical areas of the world. Currently, the control of these diseases is dependent on outdated drug treatment, with associated high toxicity and drug resistance. There is an urgent need for novel anti-parasitic therapies. One emerging anti-parasitic therapies is Host defence peptides (HDPs). Here we test the HDP BMAP-28 as an anti-leishmanial therapy against two lifecycle stages of Leishmania major, the promastigotes (insect infective form) and the intracellular amastigote (mammalian infective form). Two stereoisomers of BMAP-28, the D-amino acid form (D-BMAP-28) and the retro-inverso form (RI-BMAP-28), were also tested for anti-leishmanial activity. The BMAP-28 form (L-form) was susceptible to degradation by GP63, the metalloproteinase that covers the promastigotes cell surface. However, the BMAP-28 isomers, the D-form and RI-form were resistant, and therefore more potent against the promastigote parasite. Though other anti-leishmanial HDP studies focus on the promastigote form of the parasite, it is the mammalian infective form, the amastigote, which causes the disease symptoms. Here we demonstrate that BMAP-28 and its isomers D-BMAP-28 and RI-BMAP-28 are effective against the amastigote form of the parasite using a macrophage infection model. These findings show that BMAP-28 has excellent potential as a novel anti-leishmanial therapeutic
Reviewed by:
a section of the journa
The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein
Background:
Early in infection, the genome of the influenza A virus, consisting of eight complexes of RNA and proteins (termed viral ribonucleoproteins; vRNPs), enters the nucleus of infected cells for replication. Incoming vRNPs are imported into the nucleus of infected cells using at least two nuclear localization sequences on nucleoprotein (NP; NLS1 at the N terminus, and NLS2 in the middle of the protein). Progeny vRNP assembly occurs in the nucleus, and later in infection, these are exported from the nucleus to the cytoplasm. Nuclear-exported vRNPs are different from incoming vRNPs in that they are prevented from re-entering the nucleus. Why nuclear-exported vRNPs do not re-enter the nucleus is unknown.
Results:
To test our hypothesis that the exposure of NLSs on the vRNP regulates the directionality of the nuclear transport of the influenza vRNPs, we immunolabeled the two NLSs of NP (NLS1 and NLS2) and analyzed their surface accessibility in cells infected with the influenza A virus. We found that the NLS1 epitope on NP was exposed throughout the infected cells, but the NLS2 epitope on NP was only exposed in the nucleus of the infected cells. Addition of the nuclear export inhibitor leptomycin B further revealed that NLS1 is no longer exposed in cytoplasmic NP and vRNPs that have already undergone nuclear export. Similar immunolabeling studies in the presence of leptomycin B and with cells transfected with the cDNA of NP revealed that the NLS1 on NP is hidden in nuclear exported-NP.
Conclusion:
NLS1 mediates the nuclear import of newly-synthesized NP and incoming vRNPs. This NLS becomes hidden on nuclear-exported NP and nuclear-exported vRNPs. Thus the selective exposure of the NLS1 constitutes a critical mechanism to regulate the directionality of the nuclear transport of vRNPs during the influenza A viral life cycle.Science, Faculty ofZoology, Department ofReviewedFacult