811 research outputs found
On the accuracy of retrieved wind information from Doppler lidar observations
A single pulsed Doppler lidar was successfully deployed to measure air flow and turbulence over the Malvern hills, Worcester, UK. The DERA Malvern lidar used was a CO2 µm pulsed Doppler lidar. The lidar pulse repetition rate was 120 Hz and had a pulse duration of 0.6 µs The system was set up to have 41 range gates with range resolution of 112 m. This gave a theoretical maximum range of approximately 4.6 km. The lidar site was 2 km east of the Malvern hill ridge which runs in a north-south direction and is approximately 6 km long. The maximum height of the ridge is 430 m. Two elevation scans (Range-Height Indicators) were carried out parallel and perpendicular to the mean surface flow. Since the surface wind was primarily westerly the scans were carried out perpendicular and parallel to the ridge of the Malvern hills.
The data were analysed and horizontal winds, vertical winds and turbulent fluxes were calculated for profiles throughout the boundary layer. As an aid to evaluating the errors associated with the derivation of velocity and turbulence profiles, data from a simple idealized profile was also analysed using the same method. The error analysis shows that wind velocity profiles can be derived to an accuracy of 0.24 m s-1 in the horizontal and 0.3 m s-1 in the vertical up to a height of 2500 m. The potential for lidars to make turbulence measurements, over a wide area, through the whole depth of the planetary boundary layer and over durations from seconds to hours is discussed
Charges, Monopoles and Duality Relations
A charge-monopole theory is derived from simple and self-evident postulates.
Charges and monopoles take an analogous theoretical structure. It is proved
that charges interact with free waves emitted from monopoles but not with the
corresponding velocity fields. Analogous relations hold for monopole equations
of motion. The system's equations of motion can be derived from a regular
Lagrangian function.Comment: 17 pages + 3 figures
A Determination of the Wave Forms and Laws of Propagation and Dissipation of Ballistic Shock Waves
Experiments to ascertain the wave forms and laws of propagation and dissipation of ballistic shock waves to large distances (80 yards) from the bullet trajectory are described. Calibers 0.30, 0.50, 20 mm, and 40 mm were studied. In every case an N‐shaped wave profile was observed consisting of a sudden rise in pressure, the “head discontinuity,” followed by an approximately linear decline to a pressure about equally far below atmospheric and then a second sudden return, the “tail discontinuity,” to atmospheric pressure. The peak amplitudes of this disturbance are found to diminish about as the inverse 3/4 power of the miss‐distance (perpendicular distance from the trajectory) while the period T′ (measured between the discontinuous fronts) increases about as the 1/4 power of the miss‐distance for calibers 0.30, 0.50, and 20 mm. For 40‐mm shells the amplitude decays a little faster, about as the inverse 0.9 power of miss‐distance over the range studied. A theory taking account of the dissipation of the N‐wave energy into heat is developed to explain the observed behavior. A method of measuring absolute N‐wave amplitudes by observing the rate of change of period T′ with propagation is described. The theory leads to an absolute relationship at large distances between distance, amplitude, and period in which no arbitrary constants appear
Linear Momentum Density in Quasistatic Electromagnetic Systems
We discuss a couple of simple quasistatic electromagnetic systems in which
the density of electromagnetic linear momentum can be easily computed. The
examples are also used to illustrate how the total electromagnetic linear
momentum, which may also be calculated by using the vector potential, can be
understood as a consequence of the violation of the action-reaction principle,
because a non-null external force is required to maintain constant the
mechanical linear momentum. We show how one can avoid the divergence in the
interaction linear electromagnetic momentum of a system composed by an
idealization often used in textbooks (an infinite straight current) and a point
charge.Comment: 22 pages, 5 figures, to appear in Eur. J. Phy
Is copyright blind to the visual?
This article argues that, with respect to the copyright protection of works of visual art, the general uneasiness that has always pervaded the relationship between copyright law and concepts of creativity produces three anomalous results. One of these is that copyright lacks much in the way of a central concept of 'visual art' and, to the extent that it embraces any concept of the 'visual', it is rooted in the rhetorical discourse of the Renaissance. This means that copyright is poorly equipped to deal with modern developments in the visual arts. Secondly, the pervasive effect of rhetorical discourse appears to have made it particularly difficult for copyright law to strike a meaningful balance between protecting creativity and permitting its use in further creative works. Thirdly, just when rhetorical discourse might have been useful in identifying the significance and materiality of the unique one-off work of visual art, copyright law chooses to ignore its implications
From the ISR to RHIC--measurements of hard-scattering and jets using inclusive single particle production and 2-particle correlations
Hard scattering in p-p collisions, discovered at the CERN ISR in 1972 by the
method of leading particles, proved that the partons of Deeply Inelastic
Scattering strongly interacted with each other. Further ISR measurements
utilizing inclusive single or pairs of hadrons established that high pT
particles are produced from states with two roughly back-to-back jets which are
the result of scattering of constituents of the nucleons as desribed by Quantum
Chromodynamics (QCD), which was developed during the course of these
measurements. These techniques, which are the only practical method to study
hard-scattering and jet phenomena in Au+Au central collisions at RHIC energies,
are reviewed, as an introduction to present RHIC measurements.Comment: To appear in the proceedings of the workshop on Correlations and
Fluctuations in Relativistic Nuclear Collisions, MIT, Cambridge, MA, April
21-23, 2005, 10 pages, 9 figures, Journal of Physics: Conference Proceeding
European climate response to tropical volcanic eruptions over the last half millennium
We analyse the winter and summer climatic signal following 15 major tropical volcanic eruptions over the last half millennium based on multi-proxy reconstructions for Europe. During the first and second post-eruption years we find significant continental scale summer cooling and somewhat drier conditions over Central Europe. In the Northern Hemispheric winter the volcanic forcing induces an atmospheric circulation response that significantly follows a positive NAO state connected with a significant overall warm anomaly and wetter conditions over Northern Europe. Our findings compare well with GCM studies as well as observational studies, which mainly cover the substantially shorter instrumental period and thus include a limited set of major eruptions
Geometrical Defects in Josephson Junction Arrays
Dislocations and disclinations in a lattice of Josephson junctions will
affect the dynamics of vortex excitations within the array. These defects
effectively distort the space in which the excitations move and interact. The
interaction energy between such defects and excitations are determined and
vortex trajectories in twisted lattices are calculated. Finally, possible
experiments observing these effects are presented.Comment: 26 pages including 5 figure
The Constitutive Relations and the Magnetoelectric Effect for Moving Media
In this paper the constitutive relations for moving media with homogeneous
and isotropic electric and magnetic properties are presented as the connections
between the generalized magnetization-polarization bivector and
the electromagnetic field F. Using the decompositions of F and ,
it is shown how the polarization vector P(x) and the magnetization vector M(x)
depend on E, B and two different velocity vectors, u - the bulk velocity vector
of the medium, and v - the velocity vector of the observers who measure E and B
fields. These constitutive relations with four-dimensional geometric
quantities, which correctly transform under the Lorentz transformations (LT),
are compared with Minkowski's constitutive relations with the 3-vectors and
several essential differences are pointed out. They are caused by the fact
that, contrary to the general opinion, the usual transformations of the
3-vectors , , , , etc. are
not the LT. The physical explanation is presented for the existence of the
magnetoelectric effect in moving media that essentially differs from the
traditional one.Comment: 18 pages, In Ref. [10] here, which corresponds to Ref. [18] in the
published paper in IJMPB, Z. Oziewicz's published paper is added. arXiv admin
note: text overlap with arXiv:1101.329
- …
