103 research outputs found

    Feature-Specific Information Processing Precedes Concerted Activation in Human Visual Cortex

    Get PDF
    Current knowledge about the precise timing of visual input to the cortex relies largely on spike timings in monkeys and evoked-response latencies in humans. However, quantifying the activation onset does not unambiguously describe the timing of stimulus-feature-specific information processing. Here, we investigated the information content of the early human visual cortical activity by decoding low-level visual features from single-trial magnetoencephalographic (MEG) responses. MEG was measured from nine healthy subjects as they viewed annular sinusoidal gratings (spanning the visual field from 2 to 10° for a duration of 1 s), characterized by spatial frequency (0.33 cycles/degree or 1.33 cycles/degree) and orientation (45° or 135°); gratings were either static or rotated clockwise or anticlockwise from 0 to 180°. Time-resolved classifiers using a 20 ms moving window exceeded chance level at 51 ms (the later edge of the window) for spatial frequency, 65 ms for orientation, and 98 ms for rotation direction. Decoding accuracies of spatial frequency and orientation peaked at 70 and 90 ms, respectively, coinciding with the peaks of the onset evoked responses. Within-subject time-insensitive pattern classifiers decoded spatial frequency and orientation simultaneously (mean accuracy 64%, chance 25%) and rotation direction (mean 82%, chance 50%). Classifiers trained on data from other subjects decoded the spatial frequency (73%), but not the orientation, nor the rotation direction. Our results indicate that unaveraged brain responses contain decodable information about low-level visual features already at the time of the earliest cortical evoked responses, and that representations of spatial frequency are highly robust across individuals.Peer reviewe

    Early visual foraging in relationship to familial risk for autism and hyperactivity/inattention

    Get PDF
    Objective. Information foraging is atypical in both autism spectrum disorders (ASDs) and ADHD; however, while ASD is associated with restricted exploration and preference for sameness, ADHD is characterized by hyperactivity and increased novelty seeking. Here, we ask whether similar biases are present in visual foraging in younger siblings of children with a diagnosis of ASD with or without additional high levels of hyperactivity and inattention. Method. Fifty-four low-risk controls (LR) and 50 high-risk siblings (HR) took part in an eye-tracking study at 8 and 14 months and at 3 years of age. Results. At 8 months, siblings of children with ASD and low levels of hyperactivity/inattention (HR/ASD-HI) were more likely to return to previously visited areas in the visual scene than were LR and siblings of children with ASD and high levels of hyperactivity/inattention (HR/ASD+HI). Conclusion. We show that visual foraging is atypical in infants at-risk for ASD. We also reveal a paradoxical effect, in that additional family risk for ADHD core symptoms mitigates the effect of ASD risk on visual information foraging

    Individual differences in infant oculomotor behavior during the viewing of complex naturalistic scenes

    Get PDF
    Little research hitherto has examined how individual differences in attention, as assessed using standard experimental paradigms, relate to individual differences in how attention is spontaneously allocated in more naturalistic contexts. Here, we analyzed the time intervals between refoveating eye movements (fixation durations) while typically developing 11-month-old infants viewed a 90-min battery ranging from complex dynamic to noncomplex static materials. The same infants also completed experimental assessments of cognitive control, psychomotor reaction times (RT), processing speed (indexed via peak look during habituation), and arousal (indexed via tonic pupil size). High test–retest reliability was found for fixation duration, across testing sessions and across types of viewing material. Increased cognitive control and increased arousal were associated with reduced variability in fixation duration. For fixations to dynamic stimuli, in which a large proportion of saccades may be exogenously cued, we found that psychomotor RT measures were most predictive of mean fixation duration; for fixations to static stimuli, in contrast, in which there is less exogenous attentional capture, we found that psychomotor RT did not predict performance, but that measures of cognitive control and arousal did. The implications of these findings for understanding the development of attentional control in naturalistic settings are discussed

    Social presence and dishonesty in retail

    Get PDF
    Self-service checkouts (SCOs) in retail can benefit consumers and retailers, providing control and autonomy to shoppers independent from staff, together with reduced queuing times. Recent research indicates that the absence of staff may provide the opportunity for consumers to behave dishonestly, consistent with a perceived lack of social presence. This study examined whether a social presence in the form of various instantiations of embodied, visual, humanlike SCO interface agents had an effect on opportunistic behaviour. Using a simulated SCO scenario, participants experienced various dilemmas in which they could financially benefit themselves undeservedly. We hypothesised that a humanlike social presence integrated within the checkout screen would receive more attention and result in fewer instances of dishonesty compared to a less humanlike agent. This was partially supported by the results. The findings contribute to the theoretical framework in social presence research. We concluded that companies adopting self-service technology may consider the implementation of social presence in technology applications to support ethical consumer behaviour, but that more research is required to explore the mixed findings in the current study.<br/

    Explaining individual differences in infant visual sensory seeking

    Get PDF
    Individual differences in infants’ engagement with their en-vironment manifest early in development and are noticed by parents. Three views have been advanced to explain differ-ences in seeking novel stimulation. The optimal stimulation hypothesis suggests that individuals seek further stimulation when they are under-responsive to current sensory input. The processing speed hypothesis proposes that those capable of processing information faster are driven to seek stimulation more frequently. The information prioritization hypothesis suggests the differences in stimulation seeking index variation in the prioritization of incoming relative to ongoing informa-tion processing. Ten-month-old infants saw 10 repetitions of a video clip and changes in frontal theta oscillatory amplitude were measured as an index of information processing speed. Stimulus-locked P1 peak amplitude in response to checker-boards briefly overlaid on the video at random points during its presentation indexed processing of incoming stimulation. Parental report of higher visual seeking did not relate to re-duced P1 peak amplitude or to a stronger decrease in fron-tal theta amplitude with repetition, thus not supporting either the optimal stimulation or the processing speed hypotheses. Higher visual seeking occurred in those infants whose P1 peak amplitude was greater than expected based on their theta amplitude. These findings indicate that visual sensory seeking in infancy is explained by a bias toward novel stimulation, thus supporting the information prioritization hypothesis

    Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus

    Get PDF
    BACKGROUND:Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model. METHODOLOGY/PRINCIPAL FINDINGS:SE was induced by systemic injection of kainate in CX3CR1(eGFP/+) mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near -25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current. CONCLUSIONS/SIGNIFICANCE:These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE

    Shorter spontaneous fixation durations in infants with later emerging autism

    Get PDF
    Little is known about how spontaneous attentional deployment differs on a millisecond-level scale in the early development of autism spectrum disorders (ASD). We measured fine-grained eye movement patterns in 6-to 9-month-old infants at high or low familial risk (HR/LR) of ASD while they viewed static images. We observed shorter fixation durations (i.e. the time interval between saccades) in HR than LR infants. Preliminary analyses indicate that these results were replicated in a second cohort of infants. Fixation durations were shortest in those infants who went on to receive an ASD diagnosis at 36 months. While these findings demonstrate early-developing atypicality in fine-grained measures of attentional deployment early in the etiology of ASD, the specificity of these effects to ASD remains to be determined

    What is the role of the film viewer? The effects of narrative comprehension and viewing task on gaze control in film

    Get PDF
    Film is ubiquitous, but the processes that guide viewers' attention while viewing film narratives are poorly understood. In fact, many film theorists and practitioners disagree on whether the film stimulus (bottom-up) or the viewer (top-down) is more important in determining how we watch movies. Reading research has shown a strong connection between eye movements and comprehension, and scene perception studies have shown strong effects of viewing tasks on eye movements, but such idiosyncratic top-down control of gaze in film would be anathema to the universal control mainstream filmmakers typically aim for. Thus, in two experiments we tested whether the eye movements and comprehension relationship similarly held in a classic film example, the famous opening scene of Orson Welles' Touch of Evil (Welles & Zugsmith, Touch of Evil, 1958). Comprehension differences were compared with more volitionally controlled task-based effects on eye movements. To investigate the effects of comprehension on eye movements during film viewing, we manipulated viewers' comprehension by starting participants at different points in a film, and then tracked their eyes. Overall, the manipulation created large differences in comprehension, but only produced modest differences in eye movements. To amplify top-down effects on eye movements, a task manipulation was designed to prioritize peripheral scene features: a map task. This task manipulation created large differences in eye movements when compared to participants freely viewing the clip for comprehension. Thus, to allow for strong, volitional top-down control of eye movements in film, task manipulations need to make features that are important to narrative comprehension irrelevant to the viewing task. The evidence provided by this experimental case study suggests that filmmakers' belief in their ability to create systematic gaze behavior across viewers is confirmed, but that this does not indicate universally similar comprehension of the film narrative

    Synapse Geometry and Receptor Dynamics Modulate Synaptic Strength

    Get PDF
    Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD) and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity

    The Scene Perception & Event Comprehension Theory (SPECT) applied to visual narratives

    Get PDF
    Understanding how people comprehend visual narratives (including picture stories, comics, and film) requires the combination of traditionally separate theories that span the initial sensory and perceptual processing of complex visual scenes, the perception of events over time, and comprehension of narratives. Existing piecemeal approaches fail to capture the interplay between these levels of processing. Here, we propose the Scene Perception & Event Comprehension Theory (SPECT), as applied to visual narratives, which distinguishes between front‐end and back‐end cognitive processes. Front‐end processes occur during single eye fixations and are comprised of attentional selection and information extraction. Back‐end processes occur across multiple fixations and support the construction of event models, which reflect understanding of what is happening now in a narrative (stored in working memory) and over the course of the entire narrative (stored in long‐term episodic memory). We describe relationships between front‐ and back‐end processes, and medium‐specific differences that likely produce variation in front‐end and back‐end processes across media (e.g., picture stories vs. film). We describe several novel research questions derived from SPECT that we have explored. By addressing these questions, we provide greater insight into how attention, information extraction, and event model processes are dynamically coordinated to perceive and understand complex naturalistic visual events in narratives and the real world
    corecore