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Little research hitherto has examined how individual differences in attention,
as assessed using standard experimental paradigms, relate to individual differ-

ences in how attention is spontaneously allocated in more naturalistic contexts.
Here, we analyzed the time intervals between refoveating eye movements (fixa-
tion durations) while typically developing 11-month-old infants viewed a 90-

min battery ranging from complex dynamic to noncomplex static materials.
The same infants also completed experimental assessments of cognitive control,
psychomotor reaction times (RT), processing speed (indexed via peak look
during habituation), and arousal (indexed via tonic pupil size). High test–retest
reliability was found for fixation duration, across testing sessions and across
types of viewing material. Increased cognitive control and increased arousal
were associated with reduced variability in fixation duration. For fixations to

dynamic stimuli, in which a large proportion of saccades may be exogenously
cued, we found that psychomotor RT measures were most predictive of mean
fixation duration; for fixations to static stimuli, in contrast, in which there is
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less exogenous attentional capture, we found that psychomotor RT did not
predict performance, but that measures of cognitive control and arousal did.
The implications of these findings for understanding the development of atten-
tional control in naturalistic settings are discussed.

INTRODUCTION

Previous research has used standardized experimental assessments to study
how individual differences in attention manifest during infancy (Colombo
& Mitchell, 2009; Courage, Reynolds, & Richards, 2006; DiLalla et al.,
1990; Rose, Feldman, & Jankowski, 2002, 2009; Rose, Feldman, Jankow-
ski, & Van Rossem, 2011a; Rose, Feldman, & Jankowski, 2012). Compar-
atively little research, however, has studied how individual differences on
these experimental assessments relate to individual differences in how
attention is spontaneously allocated in naturalistic settings. This leaves a
number of important questions unanswered. For example, individual dif-
ferences in attention during infancy, as assessed using habituation and
reaction time (RT) paradigms, have been shown to relate to long-term
outcomes on language and executive function measures (Rose et al., 2009,
2012)— but are these relationships observed because early attentional con-
trol leads to better (more efficient) orienting and learning behaviors in nat-
uralistic contexts (see e.g., Samuelson, Smith, Perry, & Spencer, 2011; Yu
& Smith, 2011a,b)? Or are they observed because these experimental
assessments tap some underlying “pure” aspect of cognition that is inde-
pendent of naturalistic orienting? This question, which is relatively under-
addressed in the literature (although see Aslin, 2009; de Barbaro, Chiba,
& Deak, 2011; Hunnius, 2007; Rose, Feldman, & Jankowski, 2011b;
Smith & Sheya, 2012), is the focus of the present article.

Naturalistic behaviors can be studied at different spatio-temporal scales
(Hutchins, 1995). The present article concerns the microdynamics of spontane-
ous attention, namely the duration of fixations (typically in the order of hun-
dreds of milliseconds) during unconstrained orienting to naturalistic scenes.

Eye movements during unconstrained orienting

The central part of the retina is the fovea, which has a diameter of about
1 millimeter in infants; it comprises <1% of the retina but takes up over 50%
of the visual cortex (Yuodelis & Hendrickson, 1986). When viewing a visual
array, we spontaneously manifest a sequence of eye movements to ensure that
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light from objects of interest is projected onto the fovea (Holmqvist et al.,
2011; Land & Tatler, 2009). Our eyes alternate between periods in which the
eye is static and visual processing occurs (fixations), and rapid eye movements
(saccades) during which visual processing is suppressed (Matin, 1974). Sac-
cades, which separate fixations, can span as little as 0.1° of visual angle; fixa-
tions (in adults) generally last 200–500 msec (Holmqvist et al., 2011).

Fixation durations in adults

Within the adult literature, a body of research exists using fixation
duration as an index of online cognitive processing demands (Henderson,
2003; Henderson & Pierce, 2008; Henderson, Chanceaux, & Smith, 2009;
Henderson & Smith, 2009; Nuthmann, Smith, Engbert, & Henderson,
2010; Rayner, 1998; Smith & Henderson, 2009). Research has suggested
that bottom-up visual features such as edges and motion (Itti & Koch,
2001), luminance (Loftus, 1985) or clutter (Henderson et al., 2009) can
influence fixation duration, as well as top-down factors such as viewing
task and personal preference (Rayner, 1998; Tatler & Vincent, 2008;
Yarbus, 1967). Fixations are longer for semantically inconsistent objects
such as an octopus in a farm (Loftus & Mackworth, 1978; but see
Henderson & Hollingworth, 1998). These findings point to the utility of
fixation duration as an index of online cognitive processing demands that
varies as a function of the information at the point fixated.

Additionally, however, other studies with adults have suggested that
individual differences in fixation duration appear stable across different
types of visual stimuli. For example, significant relationships have been
demonstrated between fixation durations during the viewing of line draw-
ings, photographs, computer-rendered scenes, and faces (Castelhano &
Henderson, 2007; see also Andrews & Coppola, 1999). Similar findings
have been reported in chimpanzees (Kano & Tomonaga, 2011a,b).

Research with animals and adults has suggested that a number of com-
ponents may influence fixation duration (e.g., Findlay & Walker, 1999a,b;
Henderson, 2013; Nuthmann et al., 2010). The first component is thought
to be the oculomotor command to move to a peripheral target based on
saliency computations originating in the visual cortex and implemented
via brainstem circuitry, including the superior colliculus (Becker &
Jürgens, 1979; Findlay & Walker, 1999a,b). The second is the requirement
of processing the visual information that is present at the point fixated
(Engbert, Longtin, & Kliegl, 2002; Engbert, Nuthmann, Richter, & Kliegl,
2005; Nuthmann et al., 2010; Rayner, 1998). This is thought to be imple-
mented via online inhibitory control of eye movements exerted via the
frontal eye fields, the superior colliculus, and substantia nigra (Findlay &
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Walker, 1999a,b). In addition, work using scene onset delay paradigms
has suggested that some fixational eye movements are triggered irrespec-
tive of information at the point fixated, suggesting that internal saccade
timer mechanisms also play a role in guiding eye movement behavior
(Henderson & Pierce, 2008; Henderson & Smith, 2009; Morrison, 1984;
see also McAuley, Rothwell, & Marsden, 1999). Individual differences in
each of these three components may separately influence fixation duration
and have been successfully modeled in adults during simple psychomotor
tasks (Carpenter & Williams, 1995), reading (Engbert et al., 2002, 2005;
Reichle, Rayner, & Pollatsek, 2003), and scene viewing (Nuthmann et al.,
2010).

Another area of research has looked at within-participant variance in
fixation duration. This may relate to the role that internal saccade timer
mechanisms play in influencing fixation duration relative to other, endoge-
nous factors (Aston-Jones, Iba, Clayton, Rajkowski, & Cohen, 2007; de
Barbaro et al., 2011). For example, research has suggested that adults with
autism spectrum disorders (ASD) show reduced modulation of fixation
duration by the semantic content at the point fixated (congruous versus
incongruous) (Benson, Castelhano, Au-Yeung, & Rayner, 2012; see also
Benson, Piper, & Fletcher-Watson, 2009; Kemner, Verbaten, Cuperus,
Camfferman, & van Engeland, 1998; Landry & Bryson, 2004). “Inflexible”
orienting styles, in which saccades are relatively more driven by internally
generated saccade timing mechanisms, have been contrasted with “flexi-
ble” orienting styles in which process monitoring and the viewer’s interest
in the point fixated play a relatively greater role in determining fixation
duration (Henderson & Smith, 2009; Nuthmann et al., 2010; see also
Aston-Jones, Rajkowski, & Cohen, 1999; de Barbaro et al., 2011). This
suggests the importance of studying variance in fixation duration as a
parameter of individual differences independent of mean fixation duration.

Fixation durations in infants

An infant’s visual processing system differs from an adult’s in a number
of ways (Bronson, 1974; Colombo, 2001; Colombo & Cheatham, 2006;
Hunnius, Geuze, & van Geert, 2006; Hunnius, 2007; Johnson, 1991, 1995,
2010; Johnson, Posner, & Rothbart, 1991; Schiller, 1985).1 A number of
detailed investigations of spontaneous fixational eye movement patterns in

1Within the infant literature it should be noted that there are also researchers who use the

term “fixation” to refer to looks to a screen or stimulus presentation area (see e.g., Richards

& Cronise, 2000), rather than in the more technical usage within the adult oculomotor litera-

ture that we adopt here, defined as the period between saccadic eye movements during which

the eyes are relatively stable and gaze velocity is low (Holmqvist et al., 2011).
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infants came from Bronson, who used a 9 Hz corneal reflection eyetracker
to hand-code eye movements while viewing static, geometric shapes (Bron-
son, 1990, 1991, 1994; although see also Aslin & Salapatek, 1975; Haith,
Bergman, & Moore, 1977; Leahy, 1976; Salapatek & Kessen, 1966, 1973
for earlier work in this field). Bronson observed that when 1- to 2-month-
old infants view static visual stimuli, they show a series of long fixations
that are close together (Bronson, 1990); by 3–4 months, a more controlled
scanning method has emerged for static stimuli, with a greater proportion
of shorter (<500 msec) fixations (Bronson, 1994). When the stimulus was
flickering, however, the infants’ scanning characteristics reverted to those
found at younger ages (see also Atkinson, 2000; Bronson, 1990; Hood &
Atkinson, 1993). These developmental changes have been widely attributed
to the maturation of volitional eye movement control from the frontal eye
fields, exerted via the substantia nigra and the superior colliculus,
although this attribution remains speculative (Bronson, 1994; Hunnius,
2007; Johnson, 1991, 2009; Schiller, 1985).

Some work has noted individual differences in spontaneous fixational
eye movement patterns during infancy. Bronson (1994) measured how
individual differences in visual attentiveness change during the course of
testing in typically developing (TD) 6- to 13-week-old infants; he found
that decreases in visual attentiveness were associated with more time spent
in prolonged fixations during the viewing of static, geometric shapes.
Visual attentiveness was measured from an index derived from breaks in
contact with the eyetracker and the difference in pupil size between trials.
de Barbaro et al. (2011) played short musical clips between six TV moni-
tors positioned in a 360° circle around TD 6- to 7-month-old infants and
coded fixation durations as well as latencies to reorient visual attention,
the percentage of trials in which an infant fixated the target monitor, and
the proportion of time spent looking at “target” versus “nontarget” areas.
They found that fixation durations, total looking time to the target areas,
and likelihood to reorient toward targets all mapped onto a single factor,
which they named a “vigilance factor” based on similar findings from the
animal literature (Aston-Jones et al., 1999; Aston-Jones & Cohen, 2005).

The current study

We wished to examine how individual differences in attention, as assessed
using standard experimental paradigms, relate to individual differences in
how attention is spontaneously allocated in naturalistic contexts. To
address this, we recorded spontaneous eye movement patterns while TD
11-month-olds viewed a 90-min battery of mixed viewing materials over
five laboratory visits. Previous research points to differences in viewing
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behavior contingent on the nature of the viewing material presented, static
versus dynamic, with dynamic stimuli exhibiting significantly longer dura-
tion fixations due to extra foveal visual activity (Dorr, Martinetz, Gegen-
furtner, & Barth, 2010; Smith & Mital, 2013). We elected therefore to
present a range of viewing materials: noncomplex static (monochromatic
line drawings of simple geometric shapes), complex static (detailed photo-
graphs, for example, of fish in a fish tank), multiple dynamic faces (a
steady camera shot of four actors talking concurrently to the screen),
infant- and adult-directed TV clips, and videos of naturalistic scenes (e.g.,
short movies of everyday point-of-view scenes of restaurants, indoor
scenes, and so on (see Figure 1)). The same infants also completed a bat-
tery of widely used experimental assessments of attention. Eleven-month-
old infants were chosen because this age is often described as a “transi-
tional” age associated with the first emergence of endogenous attentional
control (Colombo & Cheatham, 2006; Courage et al., 2006). We judged
that selecting this age range, as opposed, for example, to younger infants,
might increase the range of relationships observed in this initial study.

Our first research question was, can stable individual differences be
identified in the frequency of spontaneous eye movements during uncon-
strained orienting in infancy? We hypothesized that we would identify sta-
ble individual differences in fixation durations during unconstrained
viewing, based on similar findings from the adult (e.g., Castelhano &
Henderson, 2007) and primate (Kano & Tomonaga, 2011a) literature.

Our second question was, what are the factors that drive individual dif-
ferences in the microdynamics of naturalistic attention? To assess this, we
administered five different tasks that are thought to assess cognitive con-
trol, psychomotor RTs, processing speed (assessed via peak look during
habituation), and arousal (indexed via tonic pupil size). We examined how
interparticipant differences on each of these tasks relate to differences in
(1) mean fixation duration for dynamic and for static visual stimuli, and
(2) intraparticipant variance in fixation duration (separately for dynamic
and static stimuli).

The following experimental tasks were used:

1. Psychomotor RTs – noncompetition. This measures the latency to
reorient visual attention between two spatially discrete targets pre-
sented consecutively (Elsabbagh et al., 2008; see also DiLalla et al.,
1990). It is thought to index low-level oculomotor control networks
(Karatekin, 2007). Using different but comparable measures, de
Barbaro and colleagues observed a medium correlation between
attentional reorientation latencies and spontaneous fixation dura-
tions during the viewing of TV clips in TD 6- to 7-month-old
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infants (de Barbaro et al., 2011). We predicted therefore that we
would find a positive relationship between psychomotor RTs and
fixation duration—that is, faster RTs associated with shorter fixa-
tion durations.

2. Psychomotor RTs – disengagement. This is derived by comparing
RTs between two conditions: noncompetition (target 1 disappears as
target 2 appears, as in task 1) and competition (target 1 remains on-
screen as target 2 appears). Attentional disengagement latencies are
calculated as the difference between RTs in the competition and

Figure 1 Details of the viewing material presented. The first column shows a sample

image from each category. The third column shows the luminance and feature

congestion. For the dynamic images, this has been calculated frame by frame.

Luminance was calculated in Matlab using the 1976 CIE L*a*b* (CIELAB) color

space. Feature congestion was calculated using processing scripts written by

Rosenholtz et al. (2007).
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noncompetition conditions—that is, the “cost” of the presence of
the central target (CT) (Elsabbagh et al., 2008). Attentional disen-
gagement is thought to require additional cortical involvement from
prefrontal and parietal areas (Csibra, Johnson, & Tucker, 1997;
Csibra, Tucker, & Johnson, 1998). Hunnius et al. (2006) recorded
disengagement latencies (using a substantially different paradigm)
and fixation durations to dynamic stimuli longitudinally from 10
TD infants between the ages of 4 and 26 weeks and found no evi-
dence of a positive association between the development of fixation
durations and disengagement on the level of the individual infant;
however, only a small amount of viewing material was collected
(30 sec per infant). Frick, Colombo, and Saxon (1999) identified
relationships between disengagement latencies and look duration in
3- and 4-month-old infants, and Kano and Tomonaga (2011a) iden-
tified significant correlations between disengagement latencies and
fixation durations in chimpanzees. Despite these inconsistent find-
ings we predicted that we would find a positive relationship between
attentional disengagement latencies and fixation duration—that is,
faster RTs associated with shorter fixation durations.

3. Processing speed (indexed via peak look duration during habitua-
tion). Static stimuli are presented repeatedly across discrete but
contiguous trails until the infant is judged to have habituated;
infants’ peak look (i.e., the duration of the longest unbroken look)
has been reported as this is thought to be the primary factor that
drives both individual and developmental differences in visual
habituation during infancy (Colombo et al., 2004; Colombo &
Mitchell, 1990; Colombo & Mitchell, 2009). Peak look during
habituation has been described as an index of processing speed
(Colombo & Mitchell, 2009; Rose et al., 2002). To our knowledge,
no research has yet assessed the relationship of this measure to fix-
ation durations during spontaneous orienting. However, based on
the relationships that have been hypothesized between processing
speed and peak look during habituation, and between processing
speed and fixation duration (Nuthmann et al., 2010), we predicted
that we would find a positive relationship between peak look dur-
ing habituation and fixation duration—that is, shorter peak look
associated with shorter fixation durations.

4. Cognitive control. An auditory stimulus anticipates a visual stimu-
lus, which is presented repeatedly on one side for nine consecutive
trials, before the target switches sides for the nine subsequent trials.
Cognitive control is assessed as the proportion of correct anticipa-
tory looks in the second, “postswitch” phase (Kovacs & Mehler,
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2009). To our knowledge, no research has yet assessed the relation-
ship of this measure to fixation durations during spontaneous ori-
enting. However, given the role that inhibitory elements are
thought to play in live eye movement control (Findlay & Walker,
1999a,b; Nuthmann et al., 2010), we predicted that we would find
a negative relationship between fixation duration and cognitive
control—that is, better cognitive control associated with shorter fix-
ation durations. We also predicted that we would find a negative
relationship between cognitive control and intraindividual variance
in fixations—that is, greater cognitive control associated with
reduced intraindividual variance in fixation durations.

5. Arousal (indexed via tonic pupil size). Previous research from de
Barbaro and colleagues has suggested a possible relationship
between fixation duration and autonomic arousal. One measure of
arousal used within infant cognition is pupil size, which primate
work has demonstrated is robustly linked to activity within the
norepinephrine (NE) system originating in the locus coeruleus,
which has been associated with arousal/vigilance (larger pupil
size = more arousal/alertness) (Aston-Jones & Cohen, 2005;
Karatekin, 2007; see also Laeng et al., 2012)—although a range of
other factors also influence pupil diameter, including luminance
and higher-level factors such as cognitive load (e.g., Karatekin,
2007). Increased tonic pupil size (Anderson & Colombo, 2009),
along with other indices of increased autonomic arousal (e.g., Van
Engeland, 1984), has been noted in clinical conditions such as
ASD, that also manifest reduced variability in fixation durations
as well as shorter mean fixation durations (Benson et al., 2012;
Kemner et al., 1998; Wass et al., under review). Therefore, we pre-
dicted that we would find a negative relationship with tonic pupil
size—that is, increased tonic pupil size associated with shorter fixa-
tion durations, and with reduced intraindividual variance in fixa-
tion durations.

METHODS

Participants

Twenty-one TD 11-month-old infants (12 male/9 female) participated in
the study, which was spread across five separate laboratory visits over 15
(SD – 1.5) days. Infants were aged 335 (9.2) days at visit one. Different
aspects of these data have been featured in previously published research
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(Wass, Porayska-Pomsta, & Johnson, 2011; Wass, Smith, & Johnson,
2012).

Participants completed two sets of assessments: Set A (free-viewing
material) and Set B (experimental tasks).

Set A: Free-viewing material

Infants were seated on their caregiver’s lap while the viewing material
was presented. Stimuli were presented in Matlab on a 50 Hz Tobii 1750
eyetracker subtending 24° and the Talk2Tobii toolbox (Deligianni, Senju,
Gergely, & Csibra, 2011). Shukla and colleagues verified the temporal
latency of this toolbox using a similar hardware configuration and found
it to be accurate to under 100 msec on more than 95% of samples
(Shukla, Wen, White, & Aslin, 2011).

Free-viewing materials are shown in Figure 1. Five categories of stimu-
lus (two static, three dynamic) were presented. Material in the categories
“Simple shapes”, “Complex Static Scenes”, and “Multiple faces dynamic”
and some of the material from “TV clips” were presented in a randomized
order at visits 1 and 5 (c. 600 sec of material per session, presented in
three different blocks); the remaining material was presented across visits
2, 3, and 4 (c. 830 sec of material per session). In addition, 64 sec of view-
ing material per participant was also presented of single faces (static and
dynamic). However, this material proved unusable for fixation duration
analysis because they contained a large number of saccades between close-
by locations, which could not be identified accurately due to limitations in
the accuracy of the eyetracker that we were using (see Wass et al. (2012)
for a further discussion of this). Therefore, they have not been included in
this analysis. All material was presented in segments of up to 135 sec in
duration. Between segments, the experimenter decided whether to adminis-
ter a break (if the infant had been fidgety or inattentive during the previ-
ous segment) or to proceed.

Fixation parsing was performed using Matlab scripts described in Wass
et al., 2012 and available for download (http://www.mrc-cbu.cam.ac.uk/
people/sam-wass/) (see Figure 2 and Supplementary Materials for more
details).

Set B: Experimental tasks

The experimental tasks were conducted twice at visits 1 and 5 (at
15 days’ interval). Each task was presented in blocks as described below;
blocks were interleaved in an order that was pseudo-randomized (with the
criterion that no two blocks of the same experiment were presented
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consecutively). This randomization was conducted to preclude the possibil-
ity of order effects being responsible for any observed relationships
between tasks. Those viewing materials from Set A that were presented at
visits 1 and 5 (as described above) were presented in three blocks, inter-
leaved with the Set B measures.

1. Psychomotor RTs. The “gap-overlap” task was used to assess psy-
chomotor RTs (noncompetition) and attentional disengagement
latencies (Elsabbagh et al., 2008; Wass et al., 2011). After fixating
a CT (a cartoon flower, subtending 4.5°), a lateral target (LT, a
cartoon cloud, 3°) was presented to the left or right; when the par-
ticipant fixated the LT, they received a brief audiovisual reward. In
the noncompetition condition, the CT disappears concurrently with
LT appearance; in the competition condition, the CT remains onsc-
reen with LT appearance. Trials were presented in a pseudo-ran-
domized order until enough valid trials had been collected (12
usable trials per condition per visit) or the infant became inatten-
tive. The task was presented in two blocks; each block lasted
approximately 2–3 min. The RT was the time elapsed between LT
appearance and the reported position of gaze leaving the central
fixation area (a 9° box around the CT). RTs for individual trials
that were <200 or >1200 msec were excluded (following Elsab-
bagh et al., 2008). One participant who provided fewer than 10
valid trials per condition on each visit was excluded. “Psychomotor
RT – noncompetition” was the mean RT in the noncompetition
condition. “Psychomotor RT – disengagement” was the differential
between mean RTs in the competition and noncompetition condi-
tion (following Elsabbagh et al., 2008).

2. Processing speed (peak look during habituation). Four different still
images were presented in two blocks of two at different stages of
the testing protocol. Two images were of complex nonsocial scenes
(e.g., butterflies on a field); two were of monochrome objects
against a white background. Trials commenced once the participant
fixated a CT and ended when they had looked away for 1 sec or
more. Individual stimuli were presented repeatedly until two succes-
sive looks had taken place that were each <50% of the longest
unbroken look so far, or until eight individual looks had elapsed.
If a trial lasted more than 15 sec, a small (c. 0.4 deg) re-fixation
target was briefly presented during the trial to confirm calibration
validity; this did not affect the trial timing in any way. Our out-
come measure was peak look—that is, the length of the longest
trial (Colombo & Mitchell, 2009; Courage et al., 2006). Data from
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one participant were excluded as they did not complete both blocks
at both pre- and post-testing. The duration of each block was
infant controlled but typically lasted 1–3 min.

3. Cognitive control task. After fixating a CT (a cartoon flower sub-
tending 4.5°), the trial commenced following a 300 msec delay.
Two blank rectangles (11 9 9°) were presented left and right, con-
current with an auditory stimulus for 2000 msec (the anticipatory
window). A visual reward (lasting 4000 msec) then appeared on
one side (in either the left or right rectangle) for nine trials in a
row (the preswitch phase) before swapping sides for the next nine
trials (the postswitch phase). The task was presented in two blocks,
each lasting 2–3 min. One participant did not complete all blocks
across the two testing sessions and so has been excluded. If the
participant correctly anticipated the presentation of the reward
(defined as a saccade beginning between 300 and 2300 msec after
trial onset and subject to a minimum look duration of 400 msec),
then the visual reward stimulus appeared immediately. The mea-
sure was proportion of correct anticipatory looks between trials
11–18 (i.e., the postswitch phase) (following Kovacs & Mehler,
2009).

4. Arousal (tonic pupil). The protocol used for tonic pupil size mea-
surement was derived from Anderson and Colombo (2009). Tonic
pupil was recorded during the administration of the gap-overlap
task, as this was a task in which the cognitive load was minimal;
color and luminance were also identical for all participants. A
detailed description of the steps we took to ensure this, as well as
the data parsing and analysis techniques that were used, can be
found in the Data S1.

RESULTS

Set A (free viewing) – Descriptive statistics

Before analyzing results for whether individual differences in fixation
duration are stable across different stimulus types, we first performed
descriptive analyses (see also Data S2). Table 1 compares the fixations
observed to static versus dynamic stimuli. The number of fixations
obtained is higher for the dynamic than for the static viewing materials,
which reflects the fact that the total volume of viewing material was
also higher (Figure 1). Intrasubject standard error is lower for dynamic
than for static stimuli, which may also be due to the much larger num-
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ber of fixations obtained for dynamic stimuli. A repeated-measures
ANOVA was conducted to assess whether the differences between stim-
ulus category in mean fixation duration reached significance. Mauchly’s
(1940) test was inspected and departure from sphericity was corrected
using the Greenhouse-Geisser epsilon (Greenhouse & Geisser, 1959).
Mean fixation duration was found to be significantly shorter for static
than dynamic stimuli (F(1, 2.7) = 8.4, p = .001). This is consistent with
previous reports from the adult literature (Dorr et al., 2010; Smith &
Mital, 2013).

How stable are interindividual differences in fixation duration?

Our first research question was, are fixation durations during the view-
ing of complex, naturalistic scenes a stable parameter of individual differ-
ences during infancy? We addressed this question in two ways.

First, we looked at test–retest reliability when an identical battery of
mixed static and dynamic viewing material was administered twice to the
same participants at 15 days’ viewing interval (on visits 1 and 5). A Kol-
mogorov–Smirnov (KS) test showed that both sets of results were nor-
mally distributed (p ≥ .2), and so parametric analyses have been reported.
The Pearson’s product moment correlation between visit 1 and visit 5 was
r(16) = .78, p(two-tailed) <.001 (see Figure 3a). This relationship was

(a) (b)

Figure 3 Stability of interindividual differences: (a) across testing sessions. An

identical battery of mixed static and dynamic viewing material was presented twice at

15 days’ interval (visits 1 and 5). (b) across different stimulus types. Data were pooled

across all five visits, and a comparison of mean fixation duration across different types

of stimulus was conducted. The legends show Pearson’s product moment correlations

as reported in the main text and Table 2.
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unaffected by calculating a partial correlation between visits 1 and 5 that
includes the difference in data quality between the two visits as a covariate
(r(13) = .82, p < .001). This suggests that the observed correlation is not
attributable to stable individual differences in data quality obtained across
the two visits. Other measures also showed test–retest reliability between
the two visits: intrasubject variance in fixation duration (r(18) = .55,
p = .01) and intrasubject kurtosis (r(18) = .53, p = .02). Intrasubject skew-
ness was marginally not significant (r(18) = .39, p = .09).

Second, we looked at the stability of interindividual differences in mean
fixation duration across the different types of visual stimulus we presented,
averaging across visits. The relationship between mean fixation duration
for all static and mean fixation for all dynamic stimuli was r(18) = .60,
p = 0.007. Additionally, Table 2 shows a breakdown including the two
different subcategories of static stimulus and three subcategories of
dynamic stimulus (as described in Figure 1). KS tests suggested that all
results were normally distributed (p ≥ .05) so parametric analyses have
been reported. Pearson’s product moment correlations, together with the
number of fixations available in each stimulus category, are shown in
Table 2. Medium positive correlations were noted across all comparisons,
although not all reached significance.

TABLE 2

Correlations of Mean Fixation Duration (in msec) for the Different Stimulus Types We

Administered

Complex

scenes static:

220 (32)

Multiple faces

dynamic:

74 (6)

TV clips:

1206 (171)

Naturalistic

scenes:

410 (68)

Simple shapes static

(N: 97 [26])

0.24 0.56** 0.39(*) 0.64**

Complex scenes static

(N: 220 [32])

0.44* 0.43* 0.17

Multiple faces

dynamic (N: 74 [6])

0.55** 0.47**

TV clips

(N: 1206 [171])

0.64**

**Correlation is significant at p < 0.01, *p < 0.05, (*)p < 0.1. All degrees of freedom = 19.

The figures after each category name show the average and the standard error of the number

of fixations available per participant in each category.

FIXATION DURATIONS IN INFANCY 367



Relationship of fixation duration to experimental assessments of
infant attention

Our second research question was, how do individual differences in fix-
ation duration relate to performance on other experimental assessments of
attention?

Set B (experimental tasks) – Descriptive statistics

Prior to addressing this question we first performed descriptive analyses
on our Set B data; we also calculated the test–retest reliability of our mea-
sures, using identical calculations to those used for the fixation duration
measure above (see Table 3). Significant correlations between visit 1 and
visit 5 were observed for psychomotor RT – disengagement (p < .05), peak
look duration (p < .001), cognitive control (p < .01) and tonic pupil size
(p < .001). The test–retest reliability of psychomotor RT – noncompetition
approached but did not reach significance (p = .09). We also analyzed the
relationships between the different tasks administered within set B and
identified no significant relationships between measures (see also Table 3).

Relationship between Set A and Set B

Table 4 shows the results of analyses we conducted to examine this ques-
tion. KS tests suggested that all variables were normally distributed
(p > 0.08), and so parametric statistics have been reported.

We conducted our analyses using four separate dependent variables: (1)
mean fixation duration to dynamic stimuli, (2) mean fixation to static
stimuli, (3) within-participant variance (Standard Error of the Mean –
SEM) in fixations to dynamic stimuli, (4) within-participant variance
(SEM) in fixations to static stimuli.

For each dependent variable, we first examined zero-order correlations
with the Set A measures. We then used multiple regression to examine the
unique relation of each of the Set A measures to our dependent variables.
In these analyses, all Set A measures were entered simultaneously. The
ratio of participants to predictors was ranged from 3.8 to 4.2; it should be
noted that this is below the prescribed ratio of five suggested by Hair and
colleagues, which means that there is a risk of over fitting (Hair, Tatham,
Anderson, & Black, 1998; but see Arrindell & van der Ende, 1985; Field,
2013). Overall, the fit of the model was marginally nonsignificant F
(5,15) = 2.70, p = .07, which may reflect this and means that results should
be treated with caution. The model accounted for ~60% of the variance
(R2 = .68, adjusted R2 = .60).
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For the sake of clarity our discussion of the results is organized into
four sections, based on our initial predictions:

Prediction (a) – a positive relationship with psychomotor RTs—that is,
faster RTs associated with shorter fixation durations.

Zero-order correlations suggested that psychomotor RT (noncompeti-
tion) correlated significantly with mean fixation duration to dynamic stim-
uli (r = .50, p = .02) but not to static stimuli (r = .25, p = .31). These

TABLE 3

Descriptive Analyses for the Set B Measures

Descriptives Mean Standard error N participants

Test–retest
reliabilitya

Psychomotor RT

(noncompetition) (msec)

349 27 20 .38 (.09)

Psychomotor RT

(disengagement) (msec)

270 63 20 .51 (.03)

Processing speed

(peak look during

habituation) (sec)

36.3 18.7 20 .75 (<.001)

Cognitive control (prop. corr.) 0.32 0.17 19 .60 (.003)

Arousal (tonic pupil)

(millimeter)

4.32 0.71 20 .94 (<.001)

Correlations between

measuresb

Psychomotor RT

(disengagement)

(millisecond)

Processing speed

(peak look during

habituation) (sec)

Cognitive control

(prop. corr.)

Arousal

(tonic pupil)

(millimeter)

Psychomotor RT

(noncompetition)

(msec)

0.12 �0.24 �0.25 0.28

Psychomotor RT

(disengagement)

(msec)

0.30 �0.02 0.15

Processing speed

(peak look

during habituation)

(sec)

0.21 0.04

Cognitive control

(prop. corr.)

0.38

Note. RT = reaction times.
aPearson’s product moment correlation co-efficients (p values in bracket) showing test–

retest reliability when an identical assessment battery was administered twice at 15 days’

interval – see description in text.
bCorrelations in performance between measures. All values shown are the Pearson’s prod-

uct moment correlations. No significant relationships were identified (all p values >0.1).
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TABLE 4

Zero-order Correlations and Multiple Regression Calculations to Examine the Relationship

Between Fixation Duration to Dynamic and Static Stimuli and Our Experimental Assess-

ments of Attention

Psychomotor

RT

(noncompetition)

Psychomotor

RT

(disengagement)

Processing

speed

(peak look

during

habituation)

Cognitive

control

Arousal

(tonic

pupil)

All dynamic – fixation duration (M)

Zero-order correlation

r 0.50 0.27 �0.17 �0.15 �0.17

p .03* .26 .48 .55 .47

Multiple regression

b 1.96 0.32 0.00 0.11 �0.05

SE 0.74 0.32 0.00 0.12 0.03

t 2.65 1.01 �0.80 0.88 �1.70

Part correlations 0.54 0.21 �0.16 �0.18 �0.35

p .02* .33 .44 .4 .12

All static – fixation duration (M)

Zero-order correlation

r 0.25 0.19 �0.17 �0.51 �0.49

p .31 .43 .5 .03* .03*

Multiple regression

b 0.67 0.33 0.00 �0.11 �0.05

SE 0.73 0.29 0.01 0.11 0.03

t 0.93 1.14 �0.53 �0.92 �2.00

Part correlations 0.19 0.24 �0.11 �0.19 �0.42

p .37 .28 .61 .38 .07(*)

All dynamic – fixation duration (within-participant variance)

Zero-order correlation

r 0.13 �0.10 �0.34 �0.67 �0.49

p .58 .69 .14 .01* .03*

Multiple regression

b 0.01 0.01 0.00 �0.02 0

SE 0.04 0.02 0.00 0.01 0.00

t 0.22 �0.43 �1.4 �2.4 �1.16

Part correlations 0.04 �0.08 �0.25 �0.43 �0.21

p .83 .67 .19 .03* .27

All static – fixation duration (within-participant variance)

Zero-order correlation

r 0.25 �0.08 �0.43 �0.50 �0.39

p .59 .64 .07(*) .03* .09(*)

Multiple regression

b �0.01 0.02 0.00 �0.02 �0.01

SE 0.12 0.05 0.00 0.02 0.01
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findings were relatively unchanged in the multiple regression model: The
part correlation between fixation duration to dynamic stimuli and psycho-
motor RT was .54, compared with a zero-order correlation of .50. This
suggests that noncompetition psychomotor RTs explain a largely discrete
proportion of the variance in fixation duration to dynamic stimuli.

Second, we looked at how noncompetition psychomotor RTs relate to
average within-participant variance in fixation duration. In contrast to the
mean measure, we found no relationships between psychomotor RT and
within-participant variance in fixation duration to either dynamic stimuli
(zero-order correlation: .13, part correlation: .13) or to static stimuli (zero-
order correlation: .25, part correlation: �.02).

Next, we conducted identical analyses to examine the relationship between
our fixation duration measures and psychomotor RT (disengagement).
Here, we found no significant relationships between attentional disengage-
ment and fixation duration to either dynamic (r = .27) or static (r = .19)
stimuli. Attentional disengagement also showed no significant relationship
with within-participant variance in fixation duration for either dynamic
(r = �.10) or static (r = �.08) stimuli.

Prediction (b) – a positive relationship with processing speed (indexed
via peak look during habituation)—that is, shorter peak look associated
with shorter fixation durations.

Peak look during habituation did not relate significantly to fixation dura-
tions during the viewing of either dynamic (r = �.17) or static stimuli
(r = �.17). No significant relationships were identified between peak look
during habituation and intraindividual variance in fixation duration during
the viewing of either dynamic (r = �.34) or dynamic (r = �.43) stimuli.

Table 4 (Continued)

Psychomotor

RT

(noncompetition)

Psychomotor

RT

(disengagement)

Processing

speed

(peak look

during

habituation)

Cognitive

control

Arousal

(tonic

pupil)

t �0.07 0.45 �1.34 �1.24 �1.24

Part correlations �0.02 0.10 �0.29 �0.27 �0.27

p .94 .66 .21 .24 .24

Note. RT = reaction times.

For each variable, the Pearson’s correlation coefficient and two-tailed p value of the zero-

order correlation have been given. For the multiple regression, the unstandardized regression

coefficient has been given along with its standard error. The t-test value of the regression

coefficient is also shown along with the part correlation.
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Prediction (c) – a negative relationship with cognitive control—that is,
better switching associated with shorter fixation durations.

For cognitive control, the opposite pattern was observed to that found
for the psychomotor RT measure: A significant relationship was observed
with fixations to static stimuli (r = �.51, p = .02) (increased performance
on switching task associated with shorter fixation duration), but no rela-
tionship was observed with fixations to dynamic stimuli (r = �.15,
p = 53). However, the relationship between mean fixation duration to sta-
tic stimuli and cognitive control was found to be weaker in the multiple
regression model (part. corr. = �.19), suggesting that the proportion of
the variance in fixation duration accounted for by cognitive control was
accounted for by our other independent variables.

For intraindividual variance in fixation duration, consistently negative
correlations were identified (i.e., increased performance on switching task
associated with reduced variance in fixation duration). This was observed
independently for fixations to static (r = �.50, p = .03) and to dynamic
(r = �.67, p = .01) stimuli. Again these relationships were found to be
weaker in the multiple regression model, although the relationship between
cognitive control and within-participant variance in fixation duration to
dynamic stimuli was still found to be significant (part correlations –
r = �.27 for static and r = �.43 for dynamic).

Prediction (d) a negative relationship with arousal (indexed via tonic
pupil size)— that is, increased tonic pupil associated with shorter fixation
durations.

A similar pattern of results was observed for the arousal measure as for
the switching measure: a relationship with fixation duration to static
(r = �.49, p = .03) but not dynamic (r = �.17, p = .47) stimuli. The rela-
tionship between arousal and mean fixation duration to static stimuli was
only marginally weaker in the multiple regression model (part correlation
�.42), although it became nonsignificant. This suggests that tonic pupil
explains largely but not entirely discrete proportions of the variance in fix-
ation duration to static stimuli.

Consistent relationships were observed between arousal and within-par-
ticipant variance in fixation duration to static (r = �.49, p = .03) and
dynamic stimuli (r = �.39, p = .09). However, these relationships became
weaker in the multiple regression model (part correlations: static: �.27,
dynamic: �.21), suggesting that the proportion of the variance they
explain is shared across other independent variables.
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DISCUSSION

This study addressed two questions. Our first question was, can stable
individual differences be identified in fixation durations during the view-
ing of complex naturalistic scenes in infancy? We addressed this question
in two ways. First, we presented an identical mixed static/dynamic view-
ing battery to TD 11-month-old infants at 15 days’ interval and found
significant test–retest reliability on mean fixation duration. Second, we
found that interindividual differences in fixation duration remained stable
across the different types of viewing material (Table 2 and Figure 3)
despite the differences we found in fixation patterns to different types of
visual stimulus. This replicates similar reports from the adult (Andrews
& Coppola, 1999; Castelhano & Henderson, 2007) and nonhuman pri-
mate (Kano & Tomonaga, 2011a) literature. The relationship we
observed was unaffected by covarying for data quality, suggesting that
these findings are probably not attributable to methodological factors
associated with fixation parsing (Wass et al., 2012). Mean fixation dura-
tion was found to be significantly shorter for static than for dynamic
stimuli, which replicates previous findings with adults (Dorr et al., 2010;
Smith & Mital, 2013). This may be because the total amount of infor-
mation content at each fixation point is higher for dynamic than for sta-
tic stimuli, or because it is harder to disengage from a moving than a
static fixation location.

Our second question was, how do individual differences in spontane-
ous fixation behavior during unconstrained orienting relate to perfor-
mance on other experimental assessments of infant attention? Given the
small sample size of the present study, our findings here must be inter-
preted with caution; nevertheless, a few observations can be drawn. For
most measures, we observed effects that were in line with our predic-
tions; we also found directional effects that were consistent across static
and dynamic stimuli (Table 4). Although the fit of the multiple regres-
sion model was marginally nonsignificant (p = .07) meaning that results
should be treated with caution, the results of the zero-order correlations
were largely corroborated by the multiple regression analysis; this sug-
gests that, as predicted, our experimental attention assessments were
explaining largely discrete proportions of the variance in fixation dura-
tion (with the exception of cognitive control and arousal (tonic pupil
size) which we discuss below).

We found independently for fixations to both static and dynamic
stimuli that within-participant variance in fixation duration appeared
most strongly related to cognitive control and arousal (indexed via
tonic pupil size). Increased cognitive control and increased arousal were
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associated with reduced variability in fixation duration. These results
are consistent with the literature on arousal and fixation durations
within clinical populations such as ASD, where shorter fixation dura-
tions and reduced variability in fixation duration have been noted (Ben-
son et al., 2012; Kemner et al., 1998; Wass et al., under review),
together with larger tonic pupil size (Anderson & Colombo, 2009) and
relatively spared cognitive control (Geurts, Corbett, & Solomon, 2009).
They may, however, be inconsistent with Bronson (1994) who looked at
the relationship between change in pupil size during a testing session
and changes in the proportion of time spent in brief fixations, although
exactly how Bronson defined his measures is unclear (Bronson, 1994, p.
1256).

Our results replicate those of de Barbaro and colleagues in suggesting
the importance of general vigilance levels in mediating micro-temporal ori-
enting behaviors during infancy (de Barbaro et al., 2011). The arousal/
alertness component of attention is thought to involve the NE system
originating in the locus coeruleus (Aston-Jones & Cohen, 2005; Aston-
Jones et al., 1999, 2007). Primate work has demonstrated a robust
relationship between activity levels within this system and tonic pupil size
(larger pupil size = more arousal/alertness) (Aston-Jones & Cohen, 2005;
Karatekin, 2007; see also Anderson & Colombo, 2009), and a link with
cognitive control during infancy has been postulated (e.g., Rothbart, Ellis,
Rueda, & Posner, 2003; Sheese, Rothbart, Posner, White, & Fraundorf,
2008). The NE system is thought to mediate shifting between different
modes of attention (e.g., “selective” versus “scanning” attention) (see e.g.,
Aston-Jones et al., 1999; Pannasch, Helmert, Roth, Herbold, & Walter,
2008). In individuals with high tonic arousal, this is thought to become
aberrant (Aston-Jones et al., 2007), leading to fixational eye movement
patterns that are more invariant and less subject to short-term variability
due to changes in the target element—a pattern that has been reported,
for example, in hyperaroused individuals with ASD (Anderson &
Colombo, 2009; Benson et al., 2009, 2012). However, more work—demon-
strating, for example, that phasic increases in arousal correlate with phases
of reduced variance in fixation duration—is necessary to understand these
changes in more detail.

Although all directional effects were observed consistently across sta-
tic and dynamic stimuli and were broadly in line with our predictions,
we also found that some measures showed markedly stronger relation-
ships for dynamic than for static scenes, and vice versa. Noncompeti-
tion psychomotor RT related to mean fixation duration during dynamic
stimulus viewing (r = .50), which remained significant even when the
other experimental variables were included in the regression model, but

374 WASS & SMITH



the same measure showed only a weaker, not significant relationship to
mean fixation duration during static stimulus viewing (r = .25). For cog-
nitive control and arousal we found the opposite relationship: both
measures showed weak, nonsignificant relationships with fixation dura-
tion to dynamic stimuli (r = �.15/�.17 for cognitive control/arousal)
but significant relationships with fixation duration to static stimuli
(r = �.51/�.49).

Although these relationships require replication, nevertheless a tenta-
tive post hoc interpretation can be attempted. Dynamic scene viewing
involves a greater proportion of reactive saccades that are triggered in
response to saliency changes within the target element (Dorr et al., 2010;
Itti & Baldi, 2009; Itti & Koch, 2001; Mital, Smith, Hill, & Henderson,
2010). During static scene viewing, in contrast, there is no attentional
capture due to changes in the target element (Henderson et al., 2009).
During static stimulus viewing, therefore, a greater proportion of saccades
are thought to be internally generated, influenced by internal stochastic
saccade timer mechanisms (Henderson & Smith, 2009) or other endoge-
nous features (see also Findlay & Walker, 1999a,b; Nuthmann et al.,
2010).

Whatever their interpretation, our findings are striking given that the
vast majority of research into individual differences in infant attention
has, for practical reasons, used static stimuli. Research in this area may in
future help us understand the findings reported on how spontaneous ori-
enting differs in atypical development (conditions such as ASD and Atten-
tion Deficit Hyperactivity Disorder), some of which have used static and
others more naturalistic, dynamic stimuli (e.g., Chawarska, Volkmar, &
Klin, 2010; Jones, Carr, & Klin, 2008; Speer, Cook, McMahon, & Clark,
2007).

There were two further areas where our results were not as predicted.
The first was the relationship between processing speed (indexed via peak
look duration during habituation) and fixation duration. Here, instead of
a positive relationship, we observed nonsignificant weak negative correla-
tions (r = �.17/�.17 for dynamic/static). Second, of the two psychomotor
RT measures we included, we found that the noncompetition psychomotor
RT task, (i.e., the noncompetition condition) related to fixation durations
(r = .50/.25 for dynamic/static) more strongly than the disengagement
measure (the differential between the competition and noncompetition
conditions) (r = .27/.19 for dynamic/static). This finding can be contrasted
to the literature on patterns of “sticky fixation” behavior observed on
gross orienting behaviors—looks to versus away from a static picture of a
face of checkerboard—in younger infants, where Frick et al. (1999) found,
in TD 3- to 4-month-old infants, that longer-looking infants were slower
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to shift fixation to peripheral stimuli on the competition trials but not on
the noncompetition trials. However, it should be remembered that infants
in the present study were 11-month-olds and that the literature on “sticky
fixation” issues generally concerns infants earlier during the first year of
life (Atkinson, 2000; Atkinson & Braddick, 1985, 2012; Hood & Atkinson,
1993; Hood, 1995). Therefore, a different pattern may be observed if our
experiment is repeated with younger infants.

Although the infant neuroimaging data in this field are equivocal
and limited (Braddick et al., 1992; Csibra et al., 1998; Csibra, Tucker,
& Johnson, 2001), research from the adult and primate literature sug-
gests that disengaging visual attention involves additional cortical
involvement relative to attention shifting under noncompetition condi-
tions (Findlay & Walker, 1999a,b; Nuthmann et al., 2010). Alterna-
tively, therefore, our finding that psychomotor RT latencies under
noncompetition conditions were more predictive of fixation duration
may be consistent with other authors who speculated that subcortical
processing systems may play a larger role in mediating attentional ori-
enting during the first year of life (Colombo & Cheatham, 2006; John-
son, 1991; Posner, Rothbart, Sheese, & Voelker, 2012; Schiller, 1985).
This model may make contrasting predictions to the “sticky fixation”
model described above. Whereas the “sticky fixation” model might pre-
dict a relationship between fixation duration and disengagement laten-
cies early during the first year, while poor attentional disengagement
limits orienting behavior, but not later in development, the “increasing
cortical control” model predicts that the relationship might increase
with increasing age, as cortical control over fixational eye movement
behavior increases. In future, longitudinal studies (cf. Hunnius et al.,
2006) as well as studies with co-registered EEG will help us to under-
stand these developmental changes in more detail.

LIMITATIONS AND FUTURE PLANS

First, the low sample size of the present study has precluded factor analy-
ses (cf. e.g., Rose, Feldman, & Jankowski, 2004) and means that the
results of the multiple regression analysis should be treated with caution.
Second, these results require replication. Third, as with any correlational
findings, conclusions as to causal interactions must be treated with cau-
tion. Better ways of assessing causal interactions include the use of struc-
tural equation modeling (Rose et al., 2012) and targeted cognitive training
(Wass et al., 2011).
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Fourth, we have pooled together all fixation durations recorded during
the presentation of particular stimuli, irrespective of the spatial location of
the fixation. This is because post hoc verification checks found that the dis-
parity between infants’ actual position of gaze and that reported by the
eyetracker was in many cases >1° (Bronson, 1990, 1994). Unfortunately,
the accuracy of gaze position was not validated on a per participant basis
(cf. Frank, Vul, & Saxe, 2012). In future, with the addition of better post
hoc calibration checks, it will be possible to analyze the relationship of fix-
ation duration to the information content at the point fixated—either
using dynamic areas of interest (e.g., Frintrop, Rome, & Christensen,
2012) or using algorithms that break down a dynamic image frame-by-
frame into constituent properties including corners and edge orientations,
flicker and motion (e.g. Mital et al., 2010). Using these methods it will be
possible to assess whether there are three individual differences in the
degree to which fixation durations are influenced by exogenous, stimulus-
driven factors versus endogenous factors (such as the semantic content at
the point fixated – e.g. face versus nonface) (cf. Berg, Boehnke, Marino,
Munoz, & Itti, 2009; Frank, Vul, & Johnson, 2009; Itti & Baldi, 2009;
Mital et al., 2010). Fifth, a further factor to investigate is the different role
that audio plays in influencing eye movements. The stimuli used in the
present experiment contained a mix of diegetic and nondiegetic audio.

Sixth, we have only examined fixation durations while naturalistic scenes
were presented 2-D on a computer screen. A future goal is to apply the
methods used here to data from a head-mounted eyetracker (Aslin, 2009;
Corbetta, Guan, & Williams, 2011; Franchak & Adolph, 2011; Franchak,
Kretch, Soska, & Adolph, 2011). This will allow us to investigate in more
detail how individual differences emerge in early naturalistic gaze behavior
during both typical and atypical development, and how these differences
relate to other long-term parameters of cognitive development.

SUMMARY

These results are one of the first attempts to identify and to understand the
factors guiding individual differences in infant oculomotor behavior during
the viewing of complex naturalistic scenes. First, we identified evidence that
individual differences in fixation durations are stable across time (at
15 days’ interval) and across different types of viewing material. Second,
we found evidence that, during the viewing of both static and dynamic
stimuli, variance in fixation duration was significantly related to both cog-
nitive control and arousal (indexed via tonic pupil size) (increased cognitive
control and increased arousal associated with reduced variability in fixation
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duration). Third, we found that mean fixation durations during the viewing
of dynamic viewing material related most strongly to psychomotor RT
measures, but that fixation durations during the viewing of static viewing
material related most strongly to cognitive control and arousal.

These results open a number of avenues for further work. First, the dif-
ferential pattern of individual differences we found between viewing
behavior to dynamic versus static stimuli requires replication—Particu-
larly, given that the majority of work with both typical and atypical popu-
lations hitherto has used static stimuli. Second, we have discussed how
future work will allow us to move beyond studying mean fixation duration
using the relatively crude techniques we have presented here, and toward
quantifying individual differences in the ability to modulate microtemporal
orienting behaviors contingent on context, as a result of exogenous and
endogenously relevant aspects of information content at the point fixated.
This work therefore offers new potentials for exploring and quantifying
individual differences in naturalistic orienting behavior.
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Data S1. Supplementary Methods: Further details of fixation duration
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Data S2. Supplementary Results: Fixation durations - comparison with
previously reported infant and adult fixation durations.

Figure S1. Sample raw data-plots of tonic pupil data.
Figure S2. Scatterplot showing the zero-order correlations reported in

Table 4.
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