5 research outputs found

    An exploratory model-based design of experiments approach to aid parameters identification and reduce model prediction uncertainty

    Get PDF
    The management of trade-off between experimental design space exploration and information maximization is still an open question in the field of optimal experimental design. In classical optimal experimental design methods, the uncertainty of model prediction throughout the design space is not always assessed after parameter identification and parameters precision maximization do not guarantee that the model prediction variance is minimized in the whole domain of model utilization. To tackle these issues, we propose a novel model-based design of experiments (MBDoE) method that enhances space exploration and reduces model prediction uncertainty by using a mapping of model prediction variance (G-optimality mapping). This explorative MBDoE (eMBDoE) named G-map eMBDoE is tested on two models of increasing complexity and compared against conventional factorial design of experiments, Latin Hypercube (LH) sampling and MBDoE methods. The results show that G-map eMBDoE is more efficient in exploring the experimental design space when compared to a standard MBDoE and outperforms classical design of experiments methods in terms of model prediction uncertainty reduction and parameters precision maximization

    Autonomous kinetic model identification using optimal experimental design and retrospective data analysis: methane complete oxidation as a case study

    Get PDF
    Automation and feedback optimization are combined in a smart laboratory platform for the purpose of identifying appropriate kinetic models online. In the platform, model-based design of experiments methods are employed in the feedback optimization loop to design optimal experiments that generate data needed for rapid validation of kinetic models. The online sequential decision-making in the platform, involving selection of the most appropriate kinetic model structure followed by the precise estimation of its parameters is done by autonomously switching the respective objective functions to discriminate between competing models and to minimise the parametric uncertainty of an appropriate model. The platform is also equipped with data analysis methods to study the behaviour of models within their uncertainty limits. This means that the platform not only facilitates rapid validation of kinetic models, but also returns uncertainty-aware predictive models that are valuable tools for model-based decision systems. The platform is tested on a case study of kinetic model identification of complete oxidation of methane on Pd/Al2O3 catalyst, employing a micro packed bed reactor. A suitable kinetic model with precise estimation of its parameters was determined by performing a total of 20 automated experiments, completed in two days

    Rapid Screening of Kinetic Models for Methane Total Oxidation using an Automated Gas Phase Catalytic Microreactor Platform

    Get PDF
    An automated flow micropacked bed catalytic reactor platform was developed to conduct pre-planned experiments for rapid screening of kinetic models. The microreactor was fabricated using photolithography and deep reactive ion etching of a silicon wafer, with a reaction channel width and depth of 2 mm and 420 μm respectively. It was packed with ca. 10 mg of 5 wt. % Pd/Al2O3 catalyst to perform methane combustion, which was the selected reaction to test the developed platform. The experimental system was monitored and controlled by LabVIEW to which Python scripts for online design of experiments and data analysis were integrated. Within each experimental campaign, the platform automatically adjusted the experimental conditions, and the analysis of the product stream was conducted by online gas chromatography. The experimental platform demonstrated the capability of identifying the most probable kinetic models amidst potential models within two days
    corecore