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Journal Name

Autonomous kinetic model identification using optimal
experimental design and retrospective data analysis:
methane complete oxidation as a case study†

Arun Pankajakshan, Solomon Gajere Bawa, Asterios Gavriilidis,∗ and Federico Galvanin∗

Automation and feedback optimization are combined in a smart laboratory platform for the purpose
of identifying appropriate kinetic models online. In the platform, model-based design of experiments
methods are employed in the feedback optimization loop to design optimal experiments that generate
data needed for rapid validation of kinetic models. The online sequential decision-making in the
platform, involving selection of the most appropriate kinetic model structure followed by the precise
estimation of its parameters is done by autonomously switching the respective objective functions to
discriminate between competing models and to minimise the parametric uncertainty of an appropriate
model. The platform is also equipped with data analysis methods to study the behaviour of models
within their uncertainty limits. This means that the platform not only facilitates rapid validation
of kinetic models, but also returns uncertainty-aware predictive models that are valuable tools for
model-based decision systems. The platform is tested on a case study of kinetic model identification
of complete oxidation of methane on Pd/Al2O3 catalyst, employing a micro packed bed reactor. A
suitable kinetic model with precise estimation of its parameters was determined by performing a total
of 20 automated experiments, completed in two days.

1 Introduction
The fast-proceeding digitalisation in process industries has led to
the automation of decision-making processes in plant operations.
This involves optimizations with high-fidelity and data-driven
models that are continuously validated using data generated
through feedback optimization loops. In the context of automated
decision-making in chemical processes, decision-making often in-
volves optimizations with high-fidelity kinetic models. Combining
flow chemistry1, microreactor technology2,3 and computational
methods have provided automated platforms for rapid develop-
ment and identification of kinetic models. The methods employed
in automated platforms for the development of kinetic models of
chemical reactions fall into two categories: i) automated mech-
anism generation and model building and ii) automated model
validation and refinement.

Department of Chemical Engineering, University College London, London, United King-
dom. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX; E-mail: a.gavriilidis@ucl.ac.uk,
f.galvanin@ucl.ac.uk
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 00.0000/00000000.
‡ Additional footnotes to the title and authors can be included e.g. ‘Present address:’
or ‘These authors contributed equally to this work’ as above using the symbols: ‡, §,
and ¶. Please place the appropriate symbol next to the author’s name and include a
\footnotetext entry in the the correct place in the list.

Some of the notable contributions in the first category include
the Reaction Modelling Suite (RMS)4, Reaction Mechanism Gen-
erator (RMG)5,6 and Genesys7,8. All these works propose tools to
automatically translate a set of chemistry rules into model equa-
tions and to validate the resultant models. A similar approach
used for discovery of new synthetic routes is Computer Aided Syn-
thesis Planning (CASP) which is a machine learning-assisted op-
timized search methodology to find feasible routes towards a tar-
get molecule, given the target molecule as the input9–11. In gen-
eral, the automatic generation of chemical reaction mechanism
and kinetic model structures using brute-force computing algo-
rithms subjected to feasibility constraints will eventually reduce
the redundant task of chemists or modellers in scripting down
the model equations. It will also improve the level of knowledge
abstraction between similar systems.

The second category of methods are focused on the auto-
mated validation of mechanistic or data-driven process models
in smart laboratory platforms integrated with intelligent design
with (closed loop) or without (open loop) feedback optimiza-
tion. Significant contribution in this research field includes self-
optimizing reaction systems12–16 that mainly use Design of Ex-
periments (DoE) methods17–19 and regression models to optimize
the process conditions in automated flow reactor systems. An-
other approach includes application of online Model-based De-
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sign of Experiments (MBDoE) methods20,21 in automated reac-
tor platforms to optimally explore the design space to generate
information-rich data needed for rapid validation of mechanistic
kinetic models22–30.

In this work, we report the development of an algorithmic and
computational framework to achieve autonomous kinetic model
identification in a smart microreactor platform for a heteroge-
neously catalysed gas/solid reaction. Here, the keyword smart
means the microreactor system is fully automated and digitalised
for our purpose and the keyword autonomous is used to indicate
the platform is self-sufficient to identify and study appropriate
kinetic models without any human intervention. Although simi-
lar platforms have been previously reported and successfully ap-
plied to solve real world problems of chemical kinetics24,28, in
this work we propose a framework in which the autonomous fea-
tures necessary for kinetic model identification are powered by
optimal experimental design and retrospective analysis of mod-
els. Another intention of the paper is to report a new Python Op-
timization Modeling Objects (Pyomo)31–33 based parameter esti-
mation module and a probability criterion for online model selec-
tion, both part of the proposed framework. The paper is organised
as follows: i) In Section 2, the main modules of the smart labo-
ratory platform with the theoretical details are discussed, ii) Sec-
tion 3 introduces the case study of complete oxidation of methane
along with the details of candidate kinetic models and the model
reparameterisations used, iii) Section 4 discusses the results ob-
tained and the major implications and iv) Section 5 provides a
conclusion and future scope of the work.

2 Methods

The flowchart of the algorithmic and computational framework of
the smart laboratory platform used for autonomous identification
of kinetic models is shown in Figure 1. As shown in the figure,
the platform is driven by a computational framework consisting of
five modules: 1) Preliminary design module, 2) Resource module,
3) Model calibration module, 4) Autonomous decision module,
and 5) Model-based design of experiments module. These five
modules are operated in a loop until the goal of identifying a
predictive kinetic model is achieved. An add-on to the platform
is the retrospective data analysis module, which has been set up
to review the results obtained by the platform, to reassess the
decisions taken by the platform and to provide further insights or
actions if needed.

2.1 Preliminary design module

The preliminary design module consists of pure statistical (model-
free) DoE methods whose objective is to efficiently sample the ex-
perimental design space (the domain of possible values of the ex-
perimental conditions) for qualitative and quantitative purposes.
The first qualitative purpose of DoE methods is to provide ran-
domisation of experiments, meaning the experimental conditions
must be independent of each other and should represent the en-
tire design space. This is necessary to protect the principal as-
sumption in estimation methods that the output data is a ran-
dom sample of some infinite population that describes the whole

characteristics of the system. Further qualitative benefits from
DoE methods are: i) Greater efficiency, meaning the experimen-
tal sampling should provide more information about the system
with less number of experiments and ii) Greater comprehensive-
ness, which means that the DoE sampling should result in ex-
periments that help to understand the whole of the cause-effect
relationships of the system17. The quantitative purpose of DoE
sampling is to generate output data to be used for i) estimating
the random error in observations, possibly from few repetitions
of some experiments and ii) the primary validation of the pro-
posed process models, i.e., to obtain an estimate of the model
parameters and their statistical uncertainty. The latter is impor-
tant in the robustness of the step of designing model-based op-
timal experiments, which is explained in the Design module of
the platform. As shown in Figure 1, in this work, Factorial17 DoE
is used in the Preliminary design module. The Factorial arrange-
ment of experiments in which the causing factors or inputs are
varied over different discrete levels and the experiments consist
of all possible combinations of these levels across all the factors,
offers all the significant advantages stated above. However, one
disadvantage of using a factorial design is the explosive growth
of experiments with increasing number of factors and levels. As a
solution, in higher dimensional experimental design space, two-
level fractional factorial designs remain the preferred choice34. A
generalised version of the traditional fractional factorial designs
is the Generalized Subset Design (GSD)34, which is appropriate
for problems where factors have more than two levels.

2.2 Resource module

The execution of actual experiments in the smart laboratory plat-
form will generate output data that are used to validate the set of
proposed process models (the set of models corresponding to dif-
ferent hypothesised reaction mechanism). The set of proposed re-
action process models are called identification models. The data
together with the set of identification models comprise the Re-
source module of the smart laboratory platform (see Figure 1).
The identification models of chemical reaction systems are com-
monly Differential and Algebraic Equations (DAEs), which can be
represented in the following state-space form

f(ẋ(t) ,x(t) ,u(t) ,θ) = 0

ŷ(t) = h(x(t) ,u(t) ,θ)

y(t) = h(x(t) ,u(t) ,θ)+ ε ε ∼ N (0,ΣY)

(1)

In Equation 1, x ∈RNx is the vector of state variables, ẋ is the vec-
tor of first derivatives of the state variables, u∈RNu is the vector of
inputs or control variables that define the condition of an exper-
iment, θ ∈ RNθ is the vector of model parameters, ŷ ∈ RNŷ is the
vector of model predictions of the outputs or response variables y
(those state variables which are measured), f denotes the vector
of functions representing the state equation and h denotes that
of representing the output equation. In case of chemical reaction
systems, both f and h are usually nonlinear functions of θ and u.
The outputs y from different experiments result in a population
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Preliminary design module
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Model calibration moduleResource module

LabVIEW-based GUI, which is
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AND

further
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PT

1
5

4

32

Retrospective
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Fig. 1 Flowchart of the computational framework employed in the smart laboratory platform for online kinetic studies.

of data which can be learnt by repeating some experiments and
calculating means and standard errors. The common practice is
to assume that the measurement error ε follows an independent
and identically distributed (i.i.d) Gaussian distribution with mean
vector 0 and covariance matrix Σy, which are then calculated from
repeated experiments. We have also followed this approach here
and more details about this can be found in our previous work35.

2.3 Model calibration module

The objective of Model calibration module is to test if the identi-
fication models can represent the population of output data, i.e.,
to check if the models are able to describe the output data and
its distribution. As seen in Figure 1, this module involves three
class of methods: i) parameter estimation, ii) statistical hypoth-
esis testing and iii) model selection by means of probability of
model adequacy

2.3.1 Parameter estimation.

In the parameter estimation step, the identification models are
used to fit the output data with the objective to estimate the un-
known parameters of these models for which the models are able
to describe the data within the limits of its learnt population. In
this work, we have used the method of maximum likelihood36,37

for parameter estimation. The method suggests that most proba-
ble values of the model parameters are those that maximises the
likelihood function L (θ|Y) given below

L (θ|Y) =
n

∏
i=1

p(yi|θ) =
n

∏
i=1

p(yi − ŷi (θ))

=
n

∏
i=1

(2π)−Ny/2 det−1/2
ΣY exp(−1/2[yi − ŷi (θ)]

⊤
Σ
−1
Y [yi − ŷi (θ)])

(2)
Note that the form of likelihood function provided in Equation 2
is based on the earlier assumptions ε ∼N (0,ΣY) made about the
measurement error distribution. In Equation 2, Y denotes the en-
tire set of output data, p(·) denotes the probability density func-
tion and n denotes the total number of samples. As mentioned in

Section 2.2, since f is usually nonlinear in θ, often the parame-
ter estimation problems are nonlinear and nonconvex optimiza-
tion problems with multiple local optima, sometimes including
flat regions in the objective function because of poor parameter
identifiability38–40. The effective solution of parameter estima-
tion problem with a fast and good convergence is critical in online
estimation methods. To tackle this, in this work, we have solved
the parameter estimation problems using a code developed in Py-
omo31–33. This implementation is particularly suited for solving
parameter estimation with models represented by DAEs. The al-
gorithm of this implementation is provided in Algorithm 1.

Parameter estimation using DAEs in Pyomo involves discreti-
sation transformation of the DAEs into algebraic equations and
then solving parameter estimation using the discretised models.
The transformation of DAEs to algebraic equations is done by dis-
cretisation of the continuous domain of the DAEs and defining
equality constraints to approximate derivatives at the discretisa-
tion points. In this work, orthogonal collocation41 is used to dis-
cretise the continuous domain in the DAEs.

U =




u1 (ti1) u1 (ti2) . . . u1 (tif)
u2 (ti1) u2 (ti2) . . . u2 (tif)

...
...

. . .
...

uNu (ti1) uNu (ti2) . . . uNu (tif)


i=1,...,Nexp



Y =




y1
(
tspi1

)
y1
(
tspi2

)
. . . y1

(
tspiNspi

)
y2
(
tspi1

)
y2
(
tspi2

)
. . . y2

(
tspiNspi

)
...

...
. . .

...

yNy

(
tspi1

)
yNy

(
tspi2

)
. . . yNy

(
tspiNspi

)


i=1,...,Nexp



Tsp =




tspi1

tspi2

...
tspiNspi


i=1,...,Nexp


(3)

As shown in Algorithm 1, step 1 and 2 of the algorithm in-
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volves developing helper functions to create Python dictionaries
for defining inputs and outputs in the Pyomo model. Step 3 in-
volves creating a sorted Python list of all sampling times, which
is needed to define the discretisation points in the Pyomo model.
The full set of inputs U, outputs Y and sampling times Tsp from all
the performed experiments, which are needed in steps 1-3 of the
algorithm shall be provided as Python lists as given below. Step
4 of the algorithm involves developing the Pyomo model using
the inputs, outputs and sampling times created in steps 1-3. The
final step 5 involves the discretisation of the Pyomo model and
the solution of the resulting Nonlinear Programming (NLP) prob-
lem to obtain the maximum likelihood estimates θ̂MLE of model
parameters.

Algorithm 1: Parameter estimation with DAE models in
Pyomo
Input: U, Y, Tsp, Initial guess θ0 and bounds Θ of model

parameters
Output: Maximum likelihood estimate θ̂MLE of model

parameters
1 Step 1: Create Python dictionaries for inputs. This is

shown in lines 2 to 4. For time-independent inputs, index
t can be omitted.

2 u1dic = {(i, t) : u1 (i, t) ∀i ∈
[
0, . . . ,Nexp −1

]
∀t ∈ [0, tif]}

3
...

4 uNudic = {(i, t) : uNu (i, t) ∀i ∈
[
0, . . . ,Nexp −1

]
∀t ∈ [0, tif]}

5 Step 2: Create Python dictionaries for response variables.
This is shown in lines 6 to 8.

6 y1dic = {(i, t) : y1 (i, t) ∀i ∈
[
0, . . . ,Nexp −1

]
∀t ∈ Tsp [i]}

7
...

8 yNydic = {(i, t) : yNy (i, t) ∀i ∈
[
0, . . . ,Nexp −1

]
∀t ∈ Tsp [i]}

9 Step 3: Create a unique sorted Python list of all sampling
times. This is shown in lines 10 to 14.

10 sampling = list()
11 for i = 0 to Nexp −1 do
12 sampling.extend

(
list

(
Tsp [i]

))
13 end
14 Define st such that st = unique sorted list of sampling
15 Step 4: Create Pyomo model by declaring
16 Pyomo ContinuousSet to define the continuous time

domain, which is initialsed using st created in Step 3
17 inputs U as indexed Pyomo parameters, initialsed using

Python dictionaries created in Step 1
18 measurements Y as indexed Pyomo parameters,

initialised using Python dictionaries created in Step 2
19 model parameters θ as indexed Pyomo variables,

initialised using initial guess θ0 and bounds Θ

20 differential state variables x(t) and their first
derivatives ẋ(t) defined over all experiments

21 differential equations f(ẋ(t) ,x(t) ,u(t) ,θ) = 0 as
constraints, defined over all experiments

22 objective function given in Equation 2
23 Step 5: Transcription and solution
24 Apply orthogonal collocation method to discretise the

continuous domain and the differential equations of
the Pyomo model

25 Solve the resultant NLP generated by the discretised
Pyomo model to obtain the estimate θ̂MLE

2.3.2 Statistical hypothesis testing.

In this sub-module, methods of statistical hypothesis test-
ing17,42,43 are used to test the validity of the results of parameter
estimation. Two statistical hypothesis tests are used to validate
the results of parameter estimation. First test is the chi-square
goodness of fit test44 which is used to test whether the errors
of fitting confirm or contradict the hypothesis of randomly dis-
tributed measurement errors ε. For this purpose, the test eval-
uates whether the distribution of residuals (y− ŷ) can be con-
sidered as a random sample of the specified error distribution
ε ∼N (0,ΣY). The test is performed by computing the chi-square
χ2 statistic according to the equation

χ
2 =

n

∑
i=1

[yi − ŷi (θ)]
⊤

Σ
−1
Y [yi − ŷi (θ)] (4)

and comparing the computed value to the reference chi-square
value χ2

ref = χ2
N−Nθ

(1−α), which is the value from a chi-square
distribution with (N −Nθ ) degrees of freedom and α significance
level. Here, N represents the total number of observations, i.e.
N = n ·Ny. If the computed chi-square value is greater than the
reference value, the deviations (y− ŷ) are greater than twice the
standard deviation of the error distribution and hence the model
fails to describe the data. Otherwise, the model is regarded as
adequate representation of the data. The second test is the Stu-
dent’s t-test45, which is used to evaluate the statistical quality of
parameter estimates. The aim of the test is to confirm from data,
whether the variation in the parameter estimates are contradicted
or explained by the variation within the data. The variation in the
parameter estimates can be explained using the parameter covari-
ance matrix Vθ which is approximated as the inverse of observed
Fisher Information Matrix (FIM) Hθ, which in turn is approxi-
mated as

Hθ =
[
V0
θ

]−1
+

n

∑
i=1

(
dŷi

dθ

)⊤
Σ
−1
Y

(
dŷi

dθ

)

Vθ = H−1
θ

(5)

In Equation 5, V0
θ is the prior covariance matrix and dŷi

dθ is the
Ny ×Nθ parameter sensitivity matrix whose elements are the sen-
sitivity coefficients that are first derivatives of dependent vari-
ables w.r.t model parameters. From the parameter covariance
matrix, the test statistic t-value for the Student’s t-test can be com-
puted for each parameter estimate as

ti =
θ̂i

tN−Nθ
(1−α/2)

√
Vθii

∀i = 1, . . . ,Nθ (6)

In Equation 6, θ̂i is the estimate of the i-th model parameter, the
denominator of the equation represents (1−α)100% confidence
interval around the parameter estimates and Vθii denotes the i-
th diagonal element of the parameter covariance matrix. In the
Student’s t-test, the computed t-value of individual model param-
eter is compared to a reference value tref = tN−Nθ

(1−α/2), which
is the t-value from a two-tailed t-distribution with (N −Nθ ) de-
grees of freedom and α significance level. For a parameter esti-
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mate having large confidence interval compared to the estimated
value, the computed t-statistic tends to be smaller than the ref-
erence value and the estimation of that parameter is not consid-
ered statistically precise. Parameters having t-values larger than
the reference values are considered well estimated. Another im-
portant factor to consider while investigating the quality of pa-
rameter estimates is the parameter correlation matrix Cθ whose
elements are defined by

Ci j =
Vθi j√

Vθii

√
Vθ j j

∀i, ∀ j = 1, . . . ,Nθ (7)

If Ci j approaches 1, parameters are highly correlated (or -1 for
anti-correlated), which makes their unique estimation difficult. In
the case of perfect correlation Ci j = 1 or anti-correlation Ci j =−1,
one parameter can be expressed as function of other. This will
alter the degrees of freedom and cause the t-test to be invalid.

2.3.3 Probability of model adequacy.

In this sub-module, a probability criterion is proposed to assign
probabilities to models based on their relative fitting quality. The
need for defining such a probability criterion is to select the best
model in situations where more than one model appears to be
compatible with the same set of observations; a situation referred
to as equifinality46 or model indeterminacy by modellers47. A
possible example of model indeterminacy in chemical systems can
happen in kinetic models of heterogenous chemical reactions in-
volving adsorption of a gas on a metal oxide catalyst surface48.
In such systems, the adsorption is affected by the source of the
gas and the catalytic properties of the exposed surface and in
many cases a distinction between type of adsorption (dissocia-
tive or molecular) is less clear from observed concentration data.
Even when the distinction is clear in the atomic scale or surface
level, the observed similar behaviour in the bulk phase (use of
error prone concentration measurements from the bulk phase)
can render any validation or discrimination attempt between dif-
ferent models based on type of adsorption impossible48. Under
such circumstances, using statistics for online model selection or
discrimination appear a vague index, but the equivalent probabil-
ity represents a clear and user-friendly index49. The probability
of model adequacy proposed in this work is defined as

Pr j =
Pr

(
χ2

j ≤ χ2
N−Nθ

)
∑

Nm
j=1 Pr

(
χ2

j ≤ χ2
N−Nθ

) ∀ j = 1, . . . ,Nm (8)

In Equation 8, Pr j is the probability not to reject model j, assum-
ing the null hypothesis that the distribution of residuals of model
j is a random sample of the error distribution is true. The prob-
abilities Pr(·) in the numerator and denominator of the equation
are the p-value of the chi-square goodness of fit test. The greater
these probability values, the more points in the residual distribu-
tion are not contradicted by the distribution of the measurement
error. In this work, a target probability of 90 % is set as the thresh-
old probability to select the most appropriate kinetic model.

2.4 Autonomous decision module

In this module, the results of parameter estimation, statistical hy-
pothesis testing and probability criterion are combined to make
inferences regarding different identification models. The mod-
ule contains two case (if-else) statements that are used to make
decisions in the identification procedure. As shown in Figure 1,
the two case statements are connected in parallel using switches
S1 and S2. By default, S1 is closed and S2 is open. Hence, the
first decision is being made regarding the adequacy of identifi-
cation models based on the results of chi-square goodness of fit
test and values of probability of model adequacy. When this con-
dition is met, satisfying the threshold values of both chi-square
goodness of fit test and values of probability of model adequacy,
an appropriate model that is able to represent the data is been
selected from the set of identification models. This will automat-
ically make the switch S1 open and S2 closed. Therefore, the
second case statement to analyse the statistical precision of pa-
rameter estimates get activated. In the second case statement,
the t-values of model parameters are used to assess if the parame-
ters of the selected model (the model with the highest probability
value) are precisely estimated. The case statement asks for more
evidence or data when the condition is not met or send termina-
tion command if the condition is met.

2.5 Model-based design of experiments module

In the event of limitation of evidence to make inferences from the
autonomous decision module i.e., when the conditions in the au-
tonomous decision module are not met, future experiments are
optimally designed using MBDoE methods. This is the job of
the model-based design of experiments module of the platform.
The design of optimal experiments using MBDoE methods can be
formulated as an optimization problem in which relevant model-
based objective functions are optimized by acting on the experi-
mental design vector φ. The design vector φ contains the condi-
tions of an experiment usually defined by the set of initial condi-
tions y0 of the state variables, set of inputs u, sensor locations or
sampling times tsp and possibly duration of the experiment tf, i.e.,

φ=
[
y0,u, tsp, tf

]⊤ (9)

As shown in Figure 1, in the event of not meeting the conditions
of the first case statement, i.e., when the conditions χ2 ≤ χ2

ref
and the threshold probability of 90 % is not achieved for any of
the identification models, optimal experiments for discrimination
among the most probable models are designed using MBDoE for
model discrimination (MBDoE-MD) methods. In this work, the
objective function used in the MBDoE-MD method is the one pro-
posed by Buzzi Ferraris et al.50, which is maximised to obtain
the optimal experimental condition for discriminating the most
probable models. The MBDoE-MD problem is formulated as the
optimization problem

max
φ

Ti j (φ)

Ti j (φ) = [ŷ(φ, θ̂i)− ŷ(φ, θ̂ j)]
⊤V−1

i j (φ)[ŷ(φ, θ̂i)− ŷ(φ, θ̂ j)]

(10)
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In Equation 10, Ti j is the objective function that is maximised to
discriminate between models i and j; Ti j represents the devia-
tion between predictions ŷ(φ, θ̂i) and ŷ(φ, θ̂ j) of the two mod-
els i and j relative to the limits of error in the predictions, de-
noted by V−1

i j (φ), which is the covariance matrix of the ran-

dom variable δ i (φ)− δ j (φ), where δ i (φ) = ŷ(φ, θ̂i)− y and
δ j (φ) = ŷ(φ, θ̂ j)−y. The covariance matrix Vi j (φ) is computed
as

Vi j (φ) = Vŷ(φ, θ̂i)+Vŷ(φ, θ̂ j)+2Σy

where,Vŷ(φ, θ̂) =

(
dŷ(φ)

dθ

)
Vθ

(
dŷ(φ)

dθ

)⊤
∣∣∣∣∣
θ=θ̂

(11)

As shown in Figure 1, in the event of not meeting a statistically
precise estimation of parameters of the most probable model (the
model with probability of model adequacy > 90 %), optimal ex-
periments for improving precision of model parameters are de-
signed using MBDoE for improving parameter precision (MBDoE-
PP)21. The MBDoE-PP problem is formulated as an optimization
problem of the type

min
φ

ψ

([
Hθ+ Ĥθ

(
φ, θ̂

)]−1
)

(12)

In Equation 12, Hθ is the observed FIM, Ĥθ (·) is the expected
FIM and ψ (·) is the objective function, which is a metric of the
parameter covariance matrix. Classical choice of ψ is the alpha-
betical (A-, E- and D-optimal) design criteria51. In this work, we
have used the D-optimal design criterion as the objective func-
tion for MBDoE-PP, which corresponds to the minimisation of the
determinant of the parameter covariance matrix.

2.6 Retrospective data analysis module

This module has been considered as an add-on in the autonomous
platform to mimic a human brain in analysing the results obtained
by the platform and to review the decisions made by the platform.
In fact in all automated platforms, there is a chance that a false
decision can be made whenever the real effects are obscured by
various errors such as observational errors or errors in validation.
This happens in general when the real effects are small relative
to such errors. In the autonomous platform for kinetic model
identification, even if the decisions taken (online parameter esti-
mation and MBDoE) are continuously reviewed and updated in
the light of fresh data, the decisions can be affected by two intrin-
sic limitations of the MBDoE methods. Firstly, these methods are
based on large-sample theory; in particular, the validation step
involving statistical hypothesis testing are truly valid at asymp-
totic conditions of data. Therefore, the decisions made at early
stages are relatively error-prone. Secondly, the validation proce-
dures are based on the current value of parameter estimates with-
out looking at the uncertainty regions of parameter estimates. To
tackle these limitations, and to enhance the cognitive limits of
autonomous platforms to make right decisions, we propose a ret-
rospective analysis of data as well as models within the limits of
their uncertainty.

In the retrospective data analysis, we evaluate the model pre-

diction density plots by approximating the probability distribu-
tions of model predictions. This can be done in two ways. In
the first method, for each experimental condition, the sampling
distributions of model predictions can be approximated as mul-
tivariate normal distribution with mean vector ŷ and covariance
matrix Vŷ, computed using Equation 11. In this method, the pre-
diction density plots for each experimental condition represent a
random sample drawn from the multivariate normal distribution
NNy

(
ŷi,Vŷi

)
, where i represents a sampling point. In the sec-

ond method, random sample of parameter vectors are first gen-
erated by sampling from a multivariate normal distribution with
mean vector θ̂ and covariance matrix Vθ, NNθ

(θ̂,Vθ). Then the
model predictions are evaluated for each observation of this ran-
dom sample, and the prediction density plot for each experimen-
tal condition and for each output variable is approximated from
the histogram of the model predictions. In the first method we
have to make an assumption about the probability distribution of
the model predictions, while the latter method does not need such
an assumption. In this work, we have chosen the latter method
for generating prediction density plots.

3 Case Study - Complete Catalytic Oxidation of
Methane

In this work, the smart laboratory platform was demonstrated for
the automated identification of an appropriate kinetic model for
the methane complete oxidation over 5 wt.% Pd/Al2O3 catalyst.

CH4 +2O2
Pd/Al2O3−−−−−−→ CO2 +2H2O

The kinetic study was conducted using 10 mg of 69 µm average
size catalyst in a micropacked bed reactor operated at steady state
and automatically controlled using LabVIEW52–54.

3.1 Experimental set-up

The silicon-glass microreactor was fabricated using photolithog-
raphy, deep reactive ion etching and anodic bonding. The re-
action channel was 0.42 and 2 mm deep and wide respectively,
and contained the catalyst for the reaction. The catalyst was
held in place in the reaction zone by a retainer, present at the
end of the reaction zone. The microreactor could be employed
for reaction up to a maximum temperature of 400 ◦C. For tem-
perature monitoring within the catalyst bed, the reactor had six
deed-end slots for inserting K-type thermocouples. Further de-
tails are available in our previous work35. A schematic of the
experimental set-up is shown in Figure 2. The composition of
the inlet stream was made up of 5 % methane in helium, oxygen
and nitrogen as internal standard. The pressure was monitored
with pressure sensors (Honeywell, 40PC, 100 psig). To maintain
a constant desired reactor outlet pressure, a pressure controller
(Brooks, 5866) was placed after the microreactor. The mole frac-
tions of methane, oxygen and carbon dioxide were measured with
an online gas chromatograph (Agilent, 7890A), equipped with
pneumatic sampling valve, sampling loop, GS-Carbon PLOT (Agi-
lent), HP-PLOT molecular sieve (Agilent) and thermal conductiv-
ity detector. Hardware automation was achieved by integration
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Microreactor

GC

LabVIEW-based
GUI

CH4 O2 N2

MFC

T P

Fig. 2 Schematic of the methane complete catalytic oxidation system. MFC: mass flow controller, T: temperature controller, P: pressure controller
and GC: gas chromaograph. The solid lines indicate gas flow paths, the dashed lines indicate control/measured signals.

of all the hardware components by means of Python-LabVIEW. In
the automated procedure, the gas chromatograph automatically
saved the measured data in an Excel file. A Python code was used
to access this file and save the measured data in another Excel file
called record file. The experimental conditions were also saved in
the record file. The record file was updated after each experiment
and the updated file was used as the data source for parameter
estimation algorithm. Using the Timed loop in LabVIEW, the du-
ration for each experiment, which comprised of the reaction time
and the analysis time in the gas chromatograph was set at 20
minutes. The solid lines in Figure 2 show the gas flow paths. The
dashed lines represent the communication of control/measured
signals of the mass flow controllers, the temperature controller,
the pressure controller and the gas chromatograph. The control
signals are the signals sent from the LabVIEW-based Graphical
User Interface (GUI) to the control devices. The measured signals
are the signals read from different sensors, which are displayed
on the GUI. Further details on the development of automated ex-
perimental platform are available in35.

3.2 Mass and heat transfer resistances

The reaction system was assumed to be unaffected by mass trans-
fer resistances, which was verified by computing the Mear’s cri-
terion and the Weisz-Prater number55 for external and internal
mass transfer resistances respectively. The most severe exper-
imental conditions of high temperature and high reactant con-
centrations was used for the Mear’s criterion calculation and a
value of 0.026 (which is less than 0.15) was obtained, suggest-
ing that external mass transfer limitation can be ignored. For
the internal mass transfer resistance calculation, the Weisz-Prater
criterion evaluation resulted to a value of 0.13, (which was less
than 1), suggesting that the internal mass transfer resistance can

2 4 0 2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 3 6 0

2 6 0

2 8 0

3 0 0

3 2 0

3 4 0
Me

as
ure

d T
em

pe
rat

ure
 (°C

)

C a t a l y s t  S u r f a c e  T e m p e r a t u r e  ( ° C )

y  =  0 . 9 8 7 x
R 2  =  1

Fig. 3 Calculated catalyst particle surface temperature against measured
temperature in the microreactor for catalytic methane combustion.

be neglected. More details about these calculations are provided
in our previous work35. The criterion for isothermal condition
within the catalyst particles was also satisfied, based on the con-
dition that the observed rate of reaction must not differ more than
5 % from the actual reaction rate within the catalyst particle at
constant temperature. According to the Mear’s criterion for ex-
ternal heat transfer resistance, a value < 0.15 implies external
heat transfer limitation could be neglected. The value obtained
was 0.3, hence there was a need to estimate the catalyst surface
temperature (Ts) from the measured temperature (Tm). A corre-
lation shown in Figure 3 based on the preliminary data was used
to develop a relationship between Tm and Ts, which was obtained
as a linear relationship given in Figure 3. Detailed discussion
on external heat transfer limitations and on the justification to
use a linear relationship to correlate catalyst surface temperature
and measured reactor temperature are provided in the support-
ing information of our previous work35. The linear relationship
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Table 1 Range of control variables. Temperature is measured in the reactor, while all the other variables are at the reactor inlet.

Control variable Temperature Mass flow rate Oxygen to methane mole ratio Methane concentration
[◦C] [Nmlmin−1] [molmol−1] [molmol−1]

Range 250-350 20-30 2-4 0.005-0.025

shown in Figure 3 was deployed within LabVIEW for regulating
the temperature controller by reading the measured temperature
rather than the catalyst surface temperature. However, the cat-
alyst surface temperature was used for the kinetic studies. Axial
dispersion was assumed to be negligible in the packed bed reac-
tor based on the calculated aspect ratio. More information about
the experimental set-up and reaction system can be found in our
previous work35.

3.3 Reactor model

With the assumptions stated above, the micro packed bed reactor
was modelled as isothermal Plug Flow Reactor (PFR)35 using the
following set of Ordinary Differential Equations (ODEs)

dx1

dw
=

R ·u1

u2Pavg
· (−r) x1 (0) = u4

dx2

dw
=

R ·u1

u2Pavg
· (−2r) x2 (0) = u3 ·u4

dx3

dw
=

R ·u1

u2Pavg
· (r)

dx4

dw
=

R ·u1

u2Pavg
· (2r)

yi = xi i = 1,2,3

(13)

In Equation 13, the state variables x1, x2, x3 and x4 repre-
sent the mole fraction [molmol−1] of methane, oxygen, carbon
dioxide and water respectively. The control variables in the
process include the reaction temperature [◦C], flow rate of the
feed [Nmlmin−1], oxygen to methane mole ratio in the feed
[molmol−1] and inlet methane mole fraction [molmol−1] which
are respectively denoted as u1, u2, u3 and u4. These controls form
the design vector φ, which defines the conditions of an experi-
ment. The design vector φ is bounded within the experimental
design domain shown in Table 1. In Equation 13, R [Jmol−1 K−1]

is the universal gas constant, r [molg−1 min−1] represents the re-
action rate according to a postulated kinetic model, w [g] is the
catalyst mass along the packed bed reactor (the domain of inde-
pendent variable) and Pavg [bar] is the average pressure along the
packed bed reactor, which was estimated using a pressure drop
model35.

The steady state mole fractions of methane, oxygen and car-
bon dioxide at the reactor outlet, measured across the performed
experiments formed the output data set Y. The random error in
observations was computed from repeated measurements using
the method of pooled standard deviation35 and the covariance

matrix of measurement error was estimated as

Σy =

1.85×10−7 0 0
0 4.08×10−6 0
0 0 2.60×10−7

 (14)

The diagonal entries of the matrix Σy are the variances of random
measurement error associated with measurement of methane,
oxygen, and carbon dioxide mole fractions respectively.

3.4 Candidate kinetic models

Based on the results of a preliminary screening of kinetic mod-
els, which is discussed in35, three candidate kinetic models were
considered as the potential models to describe the methane com-
plete oxidation reaction. The reaction mechanisms governing the
models and the respective rate laws are provided in Table 2.

3.5 Reparametrisation of kinetic parameters

In order to minimise the correlation between kinetic parameters
and to scale all the parameters to comparable magnitudes, the
Arrhenius (Equation 15) and Van’t Hoff (Equation 16) equations
used in the kinetic models were reparametrised58,59 as

k (T ) = exp
(

logk (Tref)−
Ea
R

(
1
T
− 1

Tref

))
(15)

K (T ) = exp
(

logK (Tref)−
∆H
R

(
1
T
− 1

Tref

))
(16)

In Equation 15, k (T ) is the reaction rate constant at tempera-
ture T , Ea is the activation energy and Tref = 320 ◦C is the ref-
erence temperature. Similarly, in Equation 16, K (T ) is the equi-
librium constant of adsorption at temperature T and ∆H is the
enthalpy of adsorption. The actual parameters, units, and their
reparametrised form for each of the candidate kinetic models are
listed in Table 3. Instead of estimating the actual kinetic model
parameters, the reparametrised parameters were estimated in the
parameter estimation step.

3.6 Computational resources

All the computational procedures used in this work were per-
formed on a 64-bit Windows machine with Intel®Core™i7-8550U
CPU, 2.00GHz Processor and 8.00 GB RAM. The Python model
identification framework was built in Python version 3.7.4. In the
Python framework, pyDOE2 package60 was used for the design of
preliminary factorial experiments. The candidate kinetic models
described by set of ODEs were written as Python functions. So-
lution of ODEs and simulation of the models including the com-
putation of sensitivity functions were carried out using the odeint
function within the Scipy61 package (scipy.integrate.odeint) with
lsoda62 integrator. Parameter estimation was carried out in
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Table 2 Candidate kinetic models considered in this work

Model Description Rate law
Model 1 Power law model rCH4 = k1 PCH4

Model 2 Langmuir Hinshelwood (LH) mechanism (surface reaction between rCH4 =
kr KCH4 PCH4

√
KO2 PO2(

1+KCH4 PCH4+
√

KO2 PO2

)2

adsorbed methane and dissociatively chemisorbed oxygen 56,57)

Model 3 Mars van Krevelen (MVK) mechanism (slow desorption rCH4 =
k1 k2 PCH4 PO2

k1 PO2+2k2 PCH4+(k1k2/k3)PO2 PCH4
of the reaction products 56,57)

Table 3 Actual parameters, units, and their reparametrised form in each of the kinetic models

Model Actual parameter Unit Reparametrised form
Model 1 k1 molbar−1 g−1 min−1

θ1 =− logk1 (Tref)

Ea1 Jmol−1
θ2 =

Ea1
104

Model 2 kr molg−1 min−1
θ1 =− logkr (Tref)

Ear Jmol−1
θ2 =

Ear
104

KO2 bar−1
θ3 = logKO2 (Tref)

∆HO2 Jmol−1
θ4 =

−∆HO2
104

KCH4 bar−1
θ5 = logKCH4 (Tref)

∆HCH4 Jmol−1
θ6 =

−∆HCH4
104

Model 3 k1 molbar−1 g−1 min−1
θ1 =− logk1 (Tref)

Ea1 Jmol−1
θ2 =

Ea1
104

k2 molbar−1 g−1 min−1
θ3 =− logk2 (Tref)

Ea2 Jmol−1
θ4 =

Ea2
104

k3 molg−1 min−1
θ5 =− logk3 (Tref)

Ea3 Jmol−1
θ6 =

Ea3
104

Pyomo using the Interior Point OPTimizer (IPOPT) solver63.
The MBDoE problems were solved using the Sequential Least
SQuares Programming (SLSQP)64 solver in the minimize func-
tion in Scipy.optimize class.

4 Results and Discussion
Given the candidate kinetic models as input, the autonomous
platform was able to perform unmanned experiments until the ap-
propriate kinetic model of methane complete oxidation was iden-
tified. The experimental settings used by the platform in order to
achieve this task comprised a campaign of Factorial experiments
(Experiments 1-12) designed using two-level fractional factorial
DoE method, MBDoE-MD experiments (Experiments 13 and 14)
and MBDoE-PP experiments (Experiments 15-20). The experi-
mental conditions of theses campaigns are shown in Figure 4.
The full set of experimental data are provided in the electronic
supplementary information.

4.1 Preliminary factorial experiments and first parameter
estimation

As shown in Figure 4, the Factorial experiments consisted of two
2-level fractional factorial designs; one in which the ranges of
input variables specified in Table 1 were used as levels and in
the other where the same ranges were used as levels except for
the inlet methane concentration for which a lower level of 0.015
was used. The experiments which were common in both the 2-
level fractional factorial designs were performed only once. The
autonomous operation of the platform did not start until the Fac-
torial experiments were finished. The output data from the Fac-
torial experiments was used for the first online parameter estima-

Table 4 Parameter estimation results showing chi-square and probability
of model adequacy for candidate models at the end of Factorial campaign
of experiments, i.e., at the end of experiment 12. The values in bold in-
dicate a failure of the chi-square test, which happens when the computed
value of chi-square becomes greater than the reference chi-square value.

Model Adequacy Probability of
χ2/χ2

ref model adequacy (%)
Model 1 63.34/48.60 0.11
Model 2 23.63/43.77 51.64
Model 3 24.75/43.77 48.25

tion. The results of first online parameter estimation are given
in Table 4. It can be seen from the table that at the end of
Factorial experiments, i.e., at the end of experiment 12, Model
1 (power law model) showed poor data compatibility and failed
the chi-square goodness of fit test. Whereas, both Model 2 LH and
Model 3 MVK passed the chi-square goodness of fit test, however
with almost same chi-square values. This resulted in almost equal
probabilities (≈ 50 %) for both the models. Immediately the Au-
tonomous decision module and the Model-based design of exper-
iments module of the platform were triggered to design new MB-
DoE experiments for discriminating between Model 2 and Model
3.

4.2 MBDoE assisted experiments and decisions made by the
autonomous decision module

The parameter estimation results showing the chi-square values
and the probability values for all the candidate models at the end
of MBDoE-MD experiments are shown in Table 5. The same re-
sults can be read from the adequacy graph provided in Figure
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Fig. 4 Experimental conditions in Factorial, MBDoE-MD and MBDoE-PP campaign of experiments, used by the autonomous platform for identification
of an appropriate kinetic model for methane oxidation.

Table 5 Parameter estimation results showing chi-square and probabil-
ity of model adequacy for candidate models at the end of MBDoE-MD
campaign of experiments, i.e., at the end of experiment 14. The values
in bold indicate a failure of the chi-square test, which happens when
the computed value of chi-square becomes greater than the reference
chi-square value.

Model Adequacy Probability of
χ2/χ2

ref model adequacy (%)
Model 1 142.96/55.76 0
Model 2 54.80/50.99 6.83
Model 3 39.52/50.997 93.17

5. The MBDoE-MD campaign of experiments started from exper-
iment 13 and continued until the chi-square criterion

(
χ2 < χ2

ref

)
and the probability criterion

(
Pr j > 90%

)
confirmed a satisfac-

tory discrimination between the models. This was achieved at
the end of experiment 14, when Model 3 (MVK model) was found
to be the most appropriate kinetic model, which agrees with the
results of similar studies in literature57. It is interesting to see
from Figure 4 that high temperature (T > 300◦C)), high oxygen
to methane mole ratio (≈ 4molmol−1) and high inlet methane
mole fraction (≈ 0.02molmol−1) resulted in discriminating be-
tween Model 2 and Model 3. This agrees with the literature sug-
gesting that high methane concentration and high temperature
promotes the rate of surface reduction and surface re-oxidation
steps in the MVK mechanism, which is the striking difference be-
tween the LH and MVK mechanisms i.e., between Model 2 and
Model 356,57. It can be seen from both Table 5 and Figure 5 that
at the end of experiment 14, only Model 3 passed the chi-square

Table 6 Parameter estimation results showing the estimated values, 95
% confidence interval (C.I) and t-values of parameters of Model 3 at the
end of MBDoE-MD experimental campaign. Note that the value of tref
is 1.68

Parameter Estimate ±95%C.I t-value
θ1 5.99±0.39 15.14
θ2 6.93±3.59 1.93
θ3 4.00±2.54 1.57
θ4 9.31±20.05 0.46
θ5 10.48±0.20 51.26
θ6 7.04±1.79 3.94

test with a probability value of 93 %. This automatically moved
switch S1 to open position and S2 to closed position (see Fig-
ure 1), by selecting Model 3 as the appropriate model. At this
stage, except parameter 3 and 4 (underlined in Table 6), all the
parameters of Model 3 were estimated precisely according to the
Student’s t-test. The statistical precision of parameter estimates
of Model 3 at the end of MBDoE-MD campaign of experiments
can be also read from the graph of 95 % confidence intervals and
t-values of parameter estimates, shown in Figure 6. The failure of
t-test for parameter 3 and 4, triggered the MBDoE-PP methods to
design new experiments for improving the precision of parameter
estimates. The MBDoE-PP experiments started from experiment
15 and continued until all the parameters of Model 3 passed the
t-test. This was achieved at the end of experiment 20. It can be
seen from Table 7 and Figure 6 that at the end of experiment 20,
all the parameters of Model 3 passed the t-test and the 95 % con-
fidence interval for all parameter estimates have become narrow
positive sets.
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Fig. 5 Chi-square value and probability of model adequacy computed for candidate models in the experimental runs in the campaigns indicated.
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Fig. 6 Confidence interval (95 %) and t-value for parameter estimates of Model 3, updated in the experimental runs in the campaigns indicated.
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Fig. 7 Confidence ellipses for critical parameter pairs of Model 3, at the end of the experiment indicated.

Table 7 Parameter estimation results showing the estimated values, 95
% confidence interval (C.I) and t-values of parameters of Model 3 at the
end of MBDoE-PP experimental campaign. Note that the value of tref
is 1.67

Parameter Estimate ±95%C.I t-value
θ1 5.77±0.36 15.91
θ2 6.72±3.81 1.76
θ3 5.87±0.27 21.94
θ4 9.51±3.62 2.62
θ5 10.17±0.18 57.38
θ6 7.98±2.12 3.76

Although parameters 3 and 4 initially appeared to be the criti-
cal parameters, which were not estimated precisely at the end of
MBDoE-MD campaign, further experimentation proved that pa-
rameters 2 and 4 were the critical parameters. The 95 % confi-
dence ellipse showing the uncertainty regions of parameter pairs
(2 and 4) and (3 and 4) are shown in Figure 7. A careful evalua-
tion of the confidence ellipses in Figure 7 suggests that the exper-
iment 15 (high temperature 327 ◦C and high oxygen to methane
mole ratio 4) significantly reduced the uncertainty region of pa-
rameter 4, which is the activation energy of the surface reduction
step in Model 3. Whereas, experiment 20 resulted in reducing the
size of uncertainty region of parameter 2, which is the activation
energy of surface oxidation step of Model 3. Another interesting
result regarding the correlation between parameters of Model 3
at the end of Factorial, MBDoE-MD and MBDoE-PP experimental
campaign are shown in Figure 8. It can be observed from the
figure that none of the parameters had perfect correlation or anti-
correlation. Moreover, the correlation between the parameters
was relatively reduced in the course of experimentation, suggest-
ing good validity of t-test.

The values of reaction rate constant (at the reference temper-
ature), pre-exponential factor and activation energy for different
steps of Model 3 were obtained from the final parameter esti-
mates of Model 3. These values are provided in Table 8. A com-

parison of the reaction rate constants at the reference tempera-
ture (320 ◦C) indicates that the slowest step in the mechanism
is the desorption of products, which agrees with the assumptions
of Model 3. In addition, the values of activation energies for sur-
face oxidation and desorption of products, obtained in this study
(67.2 ± 38.1, 79.8 ± 21.2) kJ mol−1 are comparable (consid-
ering the uncertainty limit) to those (51.5, 108.5) kJ mol−1 ob-
tained for the oxidation of methane over commercial 0.5 % Pd
on γ −Al2O3

57. However, the activation energy for the surface
reduction step obtained in this work (95.1 ± 36.2 kJ mol−1) is
higher than that (16.8 kJ mol−1) reported in the literature57.

4.3 Retrospective analysis of models

It shall be noted that at the end of MBDoE-PP experimental cam-
paign, both Model 2 and Model 3 failed the chi-square goodness
of fit test. This is clearly shown in the adequacy graph of Figure
5. In addition, the computed chi-square values were very close
for both the models, indicating their similar behaviour. This led
to the retrospective analysis of the models using prediction den-
sity plots as well as residual plots. The prediction density plots
for Model 2 and 3 were created based on the methods discussed
in section 2.6. The joint prediction density plots of Model 2 and
3 using the final parameter estimates were created for each ex-
perimental condition and for each of the output variables. This
analysis aimed to better study the degree of discrimination be-
tween the two models.

The joint prediction density plots of the models along with the
experimental observation within its error bound suggested that
it is very difficult to discriminate between Model 2 and 3 using
the observables. In most of the cases, the degree of discrimi-
nation was found negligible compared to the magnitude of ran-
dom error in observations. The full set of prediction density plots
are provided in the electronic supplementary information. The
case where the degree of discrimination between the models is
at least as significant as the error in observation was obtained
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Fig. 8 Correlation matrices of Model 3 at the end of Factorial DoE, MBDoE-MD and MBDoE-PP experimental campaigns.

for experiment 14. In experiment 14, the difference between the
model predictions relative to the respective uncertainty limits is
also significant for methane and carbon dioxide. This is shown
in the joint prediction density plots in Figure 9. In the figure,
the difference between the means of the prediction distributions
of methane and carbon dioxide and also the difference between
different observations of the two distributions (panels (a) and (c)
of Figure 9) is greater than the standard deviation (half the error
bound in the figure) of measurement error of methane and car-
bon dioxide. The result suggests that experiment 14 provided the
only conditions where the models are significantly distinguish-
able. This aligns with the results suggested by the MBDoE-MD
optimization, which also suggested experiment 14 provided the
optimal conditions to discriminate between the two models. The
prediction density plots also indicate that compared to Model 2,
the observed values within their error bounds are less contra-
dicted by Model 3. The residual plots of Model 2 and 3, showing
the magnitude of prediction error (based on the final parame-
ter estimates) at each experimental condition and for each of the
output variables were also studied to compare with the results of
prediction density plots. From the prediction density plots, pre-
diction error or residuals can be computed as the difference be-
tween means of the distribution and the corresponding observed
values. The residuals computed in this manner from the den-
sity plots are in alignment with the residuals shown in Figure
10, which are computed as the difference between model predic-
tions and the observed values. The residual plots also suggested
that both Model 2 and 3 had large residuals at experiments 5
and 12. A comparison of model predicted and experimental val-
ues for Model 3 at the end of the experimental campaign is pro-
vided in Figure 11 in the form of parity plots. As shown in the
figure, Model 3 provides close predictions to the experimental
data. Another interesting fact drawn from the figure is the nar-
row uncertainty intervals of predictions of the model evaluated
from Vŷ(·) computed using Equation 11. Compared to the un-
certainty in measurements, the negligibly small uncertainty inter-
vals of model predictions are reflected to the precise estimation
of model parameters, which are the main source of uncertainty in
model predictions. The details about computation of uncertainty
intervals in panel (d) of Figure 11, which shows the parity plot of

Model 3 in terms of methane conversion are provided in the SI.

4.4 Algorithm performance

The computational time for parameter estimation problems were
close to 7 CPU seconds, whereas the solution of MBDoE prob-
lems took approximately 30 CPU seconds. Our implementation is
available at https://github.com/UCL/Methane_oxidation.

5 Conclusions

An autonomous microreactor platform powered by optimal ex-
perimental design methods and data analysis was developed and
successfully applied for kinetic model identification. The compu-
tational framework of the platform was developed in Python pro-
gramming language and was integrated to a LabVIEW program
controlling the microreactor system. A new Pyomo-based param-
eter estimation module was employed in the framework for the ef-
ficient solution of online parameter estimation problems. In addi-
tion, a probability criterion derived from the chi-square goodness
of fit test was defined for online selection of appropriate models.
The platform was successfully demonstrated on identifying an ap-
propriate kinetic model along with precise estimation of its pa-
rameters for methane complete catalytic oxidation on Pd/Al2O3

catalyst. A total of 20 automated experiments were completed
in two days for this purpose. Among the different kinetic models
tested (Power law, Langmuir Hinshelwood and Mars van Krev-
elen), the Mars van Krevelen model was found to be the most
appropriate, which agrees with similar studies reported in liter-
ature. The activation energies for the surface oxidation, surface
reduction, and product formation steps of the Mars van Krevelen
model were estimated to be 67.2, 95.1 and 79.8 kJ mol−1 re-
spectively. Prediction density plots were employed as retrospec-
tive data analysis tools that are useful to review and reassess the
decisions taken by the platform over time. In general, the predic-
tion density plots together with experimental data provide insight
about the uncertainty as well as adequacy of models in represent-
ing the data and their assumed distribution. The joint prediction
density plots are also valuable tools to better understand the de-
gree of discrimination between the competing models.
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Table 8 The values of rate constant, pre-exponential factor and activation energies for different steps of Model 3

Reaction step Rate constant at the reference temperature Tref Pre-exponential factor Activation energy kJmol−1

Surface oxidation k1 = 3.12×10−3 molbar−1 g−1 min−1 2.58×103 molbar−1 g−1 min−1 Ea1 = 67.2
Surface reduction k2 = 2.82×10−3 molbar−1 g−1 min−1 6.69×105 molbar−1 g−1 min−1 Ea2 = 95.1
Desorption of products k3 = 3.83×10−5 molg−1 min−1 4.08×102 molg−1 min−1 Ea3 = 79.8
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Fig. 9 Prediction density plots showing uncertainty in predictions of Model 2 and 3 at experiment 14 (reaction temperature = 325.9 ◦ C, mass folow
rate = 27.7 Nml min−1, oxygen/methane mole ratio = 3.9 mol mol−1, inlet methane concentration = 0.022 mol mol−1) for (a) Methane, (b) Oxygen
and (c) Carbon dioxide. The observed value is shown as a point with the error bar (± standard deviation).
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Fig. 10 Residual plots for Model 2 and 3 based on the final parameter estimates
.
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Fig. 11 Parity plots of Model 3 at the end of experimental campaign; i.e., at the end of experiment 20: (a) for methane, (b) for oxygen and (c) for
carbon dioxide. In (a), (b) and (c), the black line represents the measured values, the two dotted red lines represent the measurement error (±2×
standard deviation). The model predictions are shown by the markers with the error bars, calculated as ±2× standard deviation of predictions. Panel
(d) shows a comparison of experimental and predicted values of methane conversion. In (d), the line with squares represents the measured methane
conversion with the corresponding error bars and the diamond markers represent the predicted values of methane conversion.
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Glossary

Acronyms

CASP Computer Aided Synthesis Planning
DAEs Differential and Algebraic Equations
DoE Design of Experiments
FIM Fisher Information Matrix
GC Gas Chromatography
GSD Generalized Subset Design
GUI Graphical User Interface
IPOPT Interior Point OPTimizer
LH Langmuir Hinshelwood
MBDoE Model-based Design of Experiments
MBDoE-MD MBDoE for model discrimination
MBDoE-PP MBDoE for improving parameter precision
MVK Mars van Krevelen
NLP Nonlinear Programming
ODE Ordinary Differential Equation
PFR Plug Flow Reactor
Pyomo Python Optimization Modeling Objects
RMG Reaction Mechanism Generator
RMS Reaction Modelling Suite
SLSQP Sequential Least SQuares Programming

Latin Symbols

det Determinant of a matrix
Ea Activation energy
k Reaction rate constant
n Total number of samples
N Total number of observations
N (·, ·) Normal distribution with specified mean and vari-

ance
Nexp Number of performed experiments
Nθ Number of model parameters
Ny Number of response variables
p(·) Probability density function
Ti j (·) Objective function to discriminate between models i

and j

Greek Symbols

α Significance level
ε Measurement error
θi i-th model parameter

θ̂i Estimate of i-th model parameter
χ2 Sum of squared residuals
ψ (·) Objective function of MBDoE-PP problem

Vectors and Matrices

Cθ [Nθ ×Nθ ] parameter correlation matrix
f(·) Vector of functions representing the state equation
h(·) Vector of functions representing the output equation
Hθ [Nθ ×Nθ ] Fisher information matrix
Tsp List of full set of sampling times (over all experi-

ments)
u(·) Vector [Nu ×1] of inputs or control variables
U List of full set of inputs (over all experiments)
Vŷ

[
Ny ×Ny

]
covariance matrix of model predictions

Vθ [Nθ ×Nθ ] parameter covariance matrix
x(·) Vector of state variables
ẋ(·) Vector of first derivatives of state variables
y(·) Vector

[
Ny ×1

]
of outputs or response variables

ŷ(·) Vector of model predictions of the output variables
Y List of full set of outputs (over all experiments)
ΣY Covariance matrix

[
Ny ×Ny

]
of measurement error

θ Vector [Nθ ×1] of model parameters
φ Design vector
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