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An automated flow micropacked bed catalytic reactor platform
was developed to conduct pre-planned experiments for rapid
screening of kinetic models. The microreactor was fabricated
using photolithography and deep reactive ion etching of a
silicon wafer, with a reaction channel width and depth of 2 mm
and 420 μm respectively. It was packed with ca. 10 mg of
5 wt.% Pd/Al2O3 catalyst to perform methane combustion,
which was the selected reaction to test the developed platform.
The experimental system was monitored and controlled by

LabVIEW to which Python scripts for online design of experi-
ments and data analysis were integrated. Within each exper-
imental campaign, the platform automatically adjusted the
experimental conditions, and the analysis of the product stream
was conducted by online gas chromatography. The experimen-
tal platform demonstrated the capability of identifying the most
probable kinetic models amidst potential models within two
days.

Introduction

Automation and optimisation are advancing as promising
extensions of microreactor technology[1] and have the potential
to save considerable time and effort in laboratory experimenta-
tion. Part of the challenge in an automated reaction set-up is
the online determination of reactants and products
concentration.[2] The integration of analytical technology[3] has
made microreactors a powerful laboratory tool for reaction and
kinetic studies.[4] Some of the analytical tools used include UV-
vis,[5] infrared,[6] Raman[4a,7] spectroscopies, high-performance
liquid chromatography (HPLC)[8] and gas chromatography
(GC).[6d,9] Furthermore, microreactors used in flow have efficient
mass and heat transfer characteristics required for isothermal
kinetic studies.[6c,d,10]

Automated systems have the ability to provide precise
control of reaction conditions with minimal consumption of
resources and user supervision.[11] When combined with design
of experiments (DoE) algorithms, they provide significant

advantages such as intelligent experimental design and highly
informative experimental data for performing rapid kinetic
studies. Automated systems could easily be adapted for
reactions with similar protocol. Automated flow systems have
been successfully applied for reaction discovery and
screening,[9a,12] as well as collecting data for model identification
and parameter estimation of kinetic models,[8b,d,13] focusing on
liquid phase reactions. However, little effort has been devoted
towards gas/solid reaction systems. In this work, such a reaction
is investigated: methane total oxidation over Pd-based catalyst.

The process of obtaining a kinetic model requires significant
time and resources, as large number of experiments are often
needed. The major difficulties in obtaining a kinetic model are:
i) obtaining a suitable model structure, i. e., set of reaction rate
equations; and ii) obtaining statistically satisfactory estimates
for the kinetic parameters, that can potentially be highly
correlated[14] and affected by structural[15] or practical identifi-
ability issues.[16] Identification of the most appropriate kinetic
model from a set of potential models involves first obtaining
the model structure that predicts the system behaviour
accurately and then estimating the parameters of the selected
model precisely. Often, this identification task is challenging
mainly due to two reasons. The first reason is the competing
nature of potential models. Kinetic models of different reaction
mechanisms may show a similar behaviour, leading to poor
distinguishability and therefore it can be difficult to find the
most appropriate model if experiments are poorly designed.[17a]

The second reason is the highly nonlinear structure of kinetic
models, in which parameters can be correlated or poorly
sensitive in the investigated range of experimental
conditions.[17b] This makes their unique estimation from the
available measurements difficult.

Noble metals as well as transition metal oxides are utilised
as methane combustion catalysts, with the former having
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higher activity. Methane combustion catalysts had been widely
studied, with platinum and palladium standing out among the
noble metals.[18] The noble metals are usually dispersed on a
support to improve the overall catalyst activity. Commonly used
supports include silica,[18–19] alumina,[20] zirconia[21] and ceria-
zirconia.[22] Palladium catalyst has been found to be more active
than platinum for methane combustion but is associated with
complex reaction mechanism due to the possible existence of
more than one active phase,[23] which are Pd and PdO,[24] the
latter being the most active phase.[25] For Pd metal on alumina,
oxidation of the metal begins at 200 °C and is complete at
about 700 °C to produce PdO, which decomposes back to Pd
metal at about 900 °C.[25b]

Complete oxidation of methane is an interesting case study,
because of the different mechanisms and kinetic models
proposed in the literature. Researchers reported that the
methane oxidation over Pd-based catalyst follows two distinct
pathways on PdO and Pd dominated surfaces with different
kinetics and proposed different mechanisms on Pd and PdO
dominated states.[26] A Mars–van Krevelen mechanism for com-
plete oxidation of methane has been reported,[20b,21c,27] which
involves a redox reaction of the catalytic site. Other researchers
found Langmuir–Hinshelwood kinetic models as plausible.[28]

Eley-Rideal mechanism has been reported to account for
catalytic oxidation of methane,[29] while empirical power laws
have also been proposed.[20c,30]

The aim of this paper is to develop an integrated
experimental/computational platform for gas phase catalytic
reactions that could conduct automated experiments to rapidly
screen potential kinetic models. The platform is demonstrated
for the complete methane oxidation on palladium catalyst. It
allows the online identification of candidate kinetic models by
performing online kinetic parameter estimation and leveraging
model discrimination techniques for optimal kinetic model
selection. Probability criteria for model selection based on
hypothesis testing are employed to aid the kinetic model
screening process. A parameter estimability analysis is carried
out on selected kinetic models to identify issues and limitations
on proposed model structures.

Results and Discussion

Temperature distribution in the micropacked bed

The axial temperature profile along the catalyst bed, which
occupied the reaction channel, was studied in the range of set
temperatures 150–400 °C (see Figure 1). We observed a varia-
tion within �3 °C at the maximum investigated temperature of
400 °C. Thus, the microreactor was considered to be isothermal.

Reproducibility of experiments in the automated platform

Prior to investigating the platform reproducibility, catalyst
stability was established by running a 200 min experiment at
300 °C (see Supporting Information, Figure S2). Furthermore,

the carbon balance during methane oxidation closed within
�2.5% (see Supporting Information, Figure S3). A blank experi-
ment (empty microreactor) was conducted at the upper limit of
the temperature range (350 °C) and showed no homogeneous
reactions. The fractional factorial design of experiments, consist-
ing of eight experiments, was used to ascertain the reproduci-
bility of the developed platform. Four replicate campaigns were
executed using two different reactors (of the same dimensions
and containing the same amount of catalyst, 11.4 mg). In
campaigns 1 and 2, experiments were performed on different
days, but with the same reactor, while in campaigns 3 and 4, a
different microreactor was used, and the experiments were
conducted on different days. Good reproducibility was ob-
served, as shown in Figure 2 from the experimental results in

Figure 1. Temperature distribution along the catalyst bed in the packed bed
microreactor at the set temperatures indicated. Experimental conditions:
11.4 mg of 5% Pd/Al2O3, 53–63 μm catalyst particles, 10 mL/min total inlet
flowrate, 1.5% CH4, 3% O2, 30% He, 65.5% N2.

Figure 2. Replicates of fractional factorial experiments results of methane
combustion on 11.4 mg of 5% Pd/Al2O3, 63–75 μm catalyst performed in the
automated platform. Campaigns 1 and 2, were performed with the same
microreactor, while campaigns 3 and 4, were performed with a different
microreactor. The error bars represent one standard deviation (%) and the
experimental conditions are provided in Supporting Information, Table S1.
Both microreactors had dimensions as given in microreactor assembly and
catalyst loading sub-section of the experimental and theoretical section.
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terms of methane conversion, (for details see Supporting
Information, section 9.1).

During the fractional factorial experiments, good agreement
between the set temperature and the measured (process)
reactor temperature was observed (see Supporting Information,
Figure S4). The actual and set profiles showed the same rate of
heating and cooling. As such, natural convection was deemed
adequate for heat removal from the microreactor. The average
pressure in the packed bed was calculated through an empirical
pressure drop model, which was based on the Ergun equation
and contained also a correction factor, so that the predicted
reactor inlet pressure matched the measured one (see Support-
ing Information, section 8).

Estimation of measurement error

The pooled standard deviation of methane, oxygen and carbon
dioxide mole fractions, which were the response variables for
the methane combustion over Pd/Al2O3, were computed based
on the method outlined in the software framework for screen-
ing of kinetic models sub-section of the experimental and
theoretical section using experimental data from factorial
design of experiments. The pooled standard deviations were
estimated using Equation (2) and found to be 0.00043, 0.00202
and 0.0005 in mole fraction for methane, oxygen and carbon
dioxide respectively. The measurement error variance calculated
from Equation (2) was used to estimate the parameter varian-
ces, thus accounting for uncertainties associated to measure-
ments obtained from the automated system.

Model adequacy and probability of correctness

Kinetic model adequacy test was performed using the proba-
bility criteria described in the model adequacy and probability
of correctness sub-section of the experimental and theoretical
section using the experimental data obtained from Latin
hypercube sampling (LHS) (see Supporting Information, section
9). The performance of all the examined kinetic models is
presented in Table 1. When c2

ref=c2>1, the model can be

considered adequate. As observed, the most probable models
were Mars–van Krevelen (slow product desorption, Model 12)
and two Langmuir–Hinshelwood models (dissociatively ad-
sorbed oxygen, Model 9 and adsorbed molecular oxygen,
Model 8). Models 12, 9 and 8 had probability of model
correctness of 49%, 40% and 11% respectively (see Table 1);
these were selected, while the other models had 0% proba-
bilities and were rejected. The selected models, which are in
accordance with Langmuir–Hinshelwood and Mars–van Kreve-
len mechanisms have been reported for methane combustion
over palladium-based catalyst in the literature. Specchia et al.[31]

after considering kinetic models based of Eley–Rideal, Lang-
muir–Hinshelwood and Mars–van Krevelen, rejected the Eley–
Rideal models for lack of fit to the obtained experimental data,
which is similar to our work. Model 8, which is Langmuir–
Hinshelwood kinetic model with molecular adsorbed oxygen is
not often used in literature for methane combustion over
palladium-based catalyst. Models 9 and 12 were among the
seven selected models reported by Hurtado et al.,[27a] who
concluded that Mars–van Krevelen mechanism with slow
desorption of products, Model 12 was the best model, after
considering twenty-one kinetic models.

Practical identifiability analysis of kinetic model parameters

Confidence intervals and Student’s t-test are used to ascertain
the statistical precision of kinetic model parameter estimates. A
lower computed t-value as compared to reference is indicative
of a poor estimated parameter. All three most promising
models selected after parameter estimation (Models 8,9 & 12)
contain six kinetic parameters. Parameter estimation results in
terms of estimated value and a-posteriori statistics (95%
confidence intervals and t-test results) for these models are
reported in Table 2. Kinetic parameters of Model 8 (Table 2)
were not all estimated satisfactorily based on the t-statistics,
since only four out of the six parameters were precisely
estimated, and were associated with low confidence interval.
Similar trend was observed with Model 9, with five out of the
six kinetic parameters estimated with good precision as shown
in Table 2. Both models 8 & 9 considered surface reaction as the
rate limiting step. For Model 12, three out of the six parameters
were estimated satisfactorily (Table 2). The parameter which is
associated with the pre-exponential factor of the catalyst
surface oxidation step (θ1) and the parameter related to
activation energy for catalyst surface oxidation (θ2) of Model 12
were poorly estimated. The values for activation energies and
heats of adsorption were computed using Equations (15) and
(16) from the obtained values in Table 2. The activation energies
for Model 8 & 9 were 74.9 and 79.3 kJ/mol respectively, which
were in agreement with a reported value of 76.3 kJ/mol.[27a] The
heats of adsorption of oxygen and methane for Model 8, were
39.5 and 13.5 kJ/mol, which were close to the reported values
of 37.0 and 10.4 kJ/mol respectively but were associated with
high uncertainty as seen from their confidence interval values
(Table 2); as such they were poorly estimated. For Model 9, the
heats of adsorption for both oxygen and methane were 96.3

Table 1. Results of model adequacy test and probability of model correct-
ness for the kinetic models of catalytic methane combustion shown in
Table 5.

Model c2 c2
ref c2

ref=c2 Probability [%]

1 279 107 0.369 0
2 248 107 0.431 0
3 270 107 0.396 0
4 256 107 0.418 0
5 275 105 0.381 0
6 272 105 0.386 0
7 676 105 0.155 0
8 205 103 0.502 11
9 200 103 0.515 40
10 257 103 0.401 0
11 279 105 0.376 0
12 199 103 0.518 49
13 279 103 0.369 0
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and 16.6 kJ/mol respectively, which were not far from reported
values of 104.2 and 21.5 kJ/mol respectively[31] but the heat of
methane adsorption estimate was associated with high level of
uncertainty from the observed confidence interval (Table 2).
Weaver et al.[32] reported an estimated value of 16.2 kJ/mol, as
binding energy for methane adsorption on PdO by applying
density functional theory calculation. The values obtained for
the activation energies for oxidation and reduction of catalyst
surface with regards to Model 12, were 121.4 and 78.0 kJ/mol
which were above reported values of 51.5 and 16.8 kJ/mol
respectively.[27a] However, these values were not precisely
estimated. The enthalpy of desorption of 89.8 kJ/mol (obtained
from θ6), which was precisely estimated, was not far off the
reported value of 108.5 kJ/mol.[27a]

Since not all parameters were precisely estimated, it is
important to check the practical identifiability of parameters of
the selected models. The Fisher information Matrix (FIM) is the
easiest way to check practical identifiability after parameter
estimation. If the FIM is fully ranked and not singular, the model
parameters are identifiable. As shown in Table 3, all three
selected kinetic models are fully ranked which indicates that all
the kinetic parameters are practically identifiable.

Furthermore, the Relative Fisher Information index (RFI)[17b]

of experiments was quantified from the trace of FIM for the
selected models in the LHS-sampled design space of exper-
imental conditions. As observed in Figures 3–5 for all the
models, about one-third of the experimental conditions (points
marked in red) are characterised by a low information content.
The numbers on top of each point in the design space are the
ratio of oxygen to methane in the feed. The region that is
associated with low amount of information content is within
the low total flowrate portion of the design space. Almost all
the experiments within this design space were not useful for
the identification of kinetic model parameters. Comparing the
RFI of the three models in Figure 6, only about two-thirds of the
experiments were highly informative, and information about
the selected models slightly varies with the experimental
conditions within the design space, (details on experimental
conditions are in Supporting Information, Table S2). Hence, to
optimally design experiments to improve the practical identifi-
ability of the poorly estimated parameters one should exploit

Table 2. Parameters estimated and t-test for Langmuir–Hinshelwood
kinetic model (adsorbed molecular oxygen, Model 8), Langmuir–Hinshel-
wood kinetic model (dissociatively adsorbed oxygen, Model 9) and Mars–
van Krevelen kinetic model (Model 12).

Parameter Estimate Confidence interval [
��

t-
value

Reference t-
value

Model 8
θ1 9.16 0.20 45.18 1.66
θ2 7.49 2.16 3.46
θ3 3.89 0.40 9.64
θ4 3.95 3.35 1.18[a]

θ5 4.45 0.60 7.44
θ6 1.35 6.14 0.22[a]

Model 9
θ1 9.08 0.23 39.86 1.66
θ2 7.93 2.10 3.77
θ3 4.49 0.95 4.71
θ4 9.63 4.67 2.06
θ5 4.22 0.58 7.30
θ6 1.66 5.19 0.32[a]

Model 12
θ1 3.52 2.23 1.58[a] 1.66
θ2 12.14 17.77 0.68[a]

θ3 6.25 0.32 19.69
θ4 7.81 6.31 1.06[a]

θ5 10.46 0.21 48.41
θ6 8.88 1.87 4.21

[a] t-values below the threshold value

Table 3. Results of practical identifiability test of the kinetic models of
catalytic methane combustion appearing in Table 5.

Model Model category Rank Remark

8 Langmuir–Hinshelwood 6/6 FIM fully ranked
9 Langmuir–Hinshelwood 6/6 FIM fully ranked
12 Mars–van Krevelen 6/6 FIM fully ranked

Figure 3. Mapping of the Relative Fisher Information index in the design
space for Model 8 from Latin hypercube sampling experimental data. The
number above each point is the oxygen to methane mole ratio.

Figure 4. Mapping of the Relative Fisher Information index in the design
space for Model 9 from Latin hypercube sampling experimental data. The
number above each point is the oxygen to methane mole ratio.
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the experimental regions associated with high information,
since it has been established that the parameters are identifi-
able. The experimental conditions which were associated with
the highest amount of information are those at high temper-
ature and high initial concentration of methane and can be
used to initialise model-based design of experiments (MBDoE)
methods for improving practical identifiability of model param-
eters; however, this was outside the scope of this paper.

The LHS-generated experimental data were used to com-
pare with the predicted data of models 8, 9 & 12 (the selected
models according to statistical analysis). A good agreement of
model prediction with experimental data of all measured mole
fractions was established for the three models, as shown in
Figures 7a,b,c as minimal deviations of measurements from
model predictions were observed. In order to visualise the
difference in the performance of the models, the predictions of
the models against the experimental data were analysed for
each measured species. Considering measurements of concen-
trations against predictions of the selected models, as shown in
Figure 8, a similar pattern was observed, but differences existed

among the three models. Model 12 has lower deviation from
the diagonal line, which is more evident for the parity plots of
methane (Figure 8a) and oxygen (Figure 8b). To further visualise
the differences in terms of model performance, residual plots,
which is the difference between predicted and experimental
data, are shown in Figures 8 d–f. From the plots, Model 12 had
the lowest residual values for all the species, which agrees with
the probability of model correctness (see Table 1) of this model
having the highest value of 49%. Few outliers were observed
from the data, which were outside the region of two-standard
deviation limits. A robust experimental design approach, such

Figure 5. Mapping of the Relative Fisher Information index in the design
space for Model 12 from Latin hypercube sampling experimental data. The
number above each point is the oxygen to methane mole ratio.

Figure 6. Ranking of Latin hypercube sampling experiments based on the
Relative Fisher Information index.

Figure 7. Parity plots for reactor outlet mole fractions based on (a)
Langmuir–Hinshelwood rate expression (Model 8), (b) Langmuir–Hinshel-
wood rate expression (Model 9), (c) Mars–van Krevelen rate expression
(Model 12) of methane combustion from Latin hypercube sampling
experimental data.
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as MBDoE for model discrimination, will be vital in distinguish-
ing between these competing models.

Conclusion

The experimental platform developed, demonstrated the capa-
bility of conducting automated experiments based on user-
defined conditions using factorial and Latin hypercube sam-
pling experimental designs. The automated platform success-
fully executed a large number of experiments, demonstrating

Figure 8. Reactor outlet mole fractions parity plots of the selected models for (a) methane, (b) oxygen, (c) carbon dioxide and residual plots of the selected
models for (d) methane, (e) oxygen (f) carbon dioxide, using the Latin hypercube sampling experimental data. The red lines represent the two-standard
deviations limits.
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its capability for rapid screening of kinetic models within a short
time. The robustness of the platform was established, as it could
handle large number of experiments without user attention in a
safe manner and screen proposed kinetic models within 48 h.
The platform showed consistency in terms of control of input
variables, such as reactant flow rate, reaction temperature and
pressure measurement, as well as good reproducibility of
results, as evident by a set of repeated factorial experiments.
Similar level of agreement between prediction and experiments
was observed between Langmuir-Hinshelwood (dissociatively
and molecular adsorbed oxygen) and Mars–van Krevelen (slow
product desorption) kinetic models, which were the most
probable models from the ones investigated, both showing a
good fitting performance, within the range of controlled
variables studied, as demonstrated by the obtained parity plots.
As such, these models could serve as useful tool for the
prediction of reaction behaviour within the experimental design
space considered. Some of the kinetic parameters of the models
were not precisely estimated. However, the estimated kinetic
parameters can be used as prior information for a more
intelligent experimental design, such as model-based design of
experiments. Work on the application of model-based design of
experiments, which is a more sophisticated method for
distinguishing the competing models and estimating of kinetic
parameters with the highest precision is in progress.

Experimental and Theoretical Section

Microreactor assembly and catalyst loading

The silicon-glass microreactor employed in this work is shown in
Figure 9a. It was fabricated using photolithography and deep
reactive ion etching (DRIE) process. Anodic bonding at 400 °C and
500 V was used for sealing the structured silicon wafer to a glass
cover. The reaction channel was 2 mm wide and 420 μm deep. The
microreactor had six dead-end slots perpendicular to the reaction
channel for inserting thermocouples to monitor the temperature
along the catalyst bed. A catalyst retainer at the end of the reaction

channel held the catalyst in place. The microreactor assembly (see
Figure 9b) included parts for heating, connecting the reaction gases
and analysis section and holding the microreactor in place. The
heating chuck was an integral part of the microreactor assembly
and consisted of a heating block (54 mm×40 mm×2.5 mm),
ceramic heater (ULTRAMIC, Watlow), (at the top right of Figure 9b,
its electric wire connection is shown) and reactor clamp (54 mm×
40 mm×2.5 mm). The heating block kept the ceramic heater in
place. The microreactor was placed between the reactor bottom
(35 mm×16 mm×10 mm) and top (35 mm×16 mm×5 mm) feed-
through connectors. The bottom connector was at the same level
with the heating block and contained grooves for high temperature
O-rings (Perlast G80 A, O RingsLtd) for sealing the inlet/outlet of
the microreactor. The reactor clamp held the microreactor in firm
position on the ceramic heater for effective and uniform heating.
The catalyst, 5% Pd/Al2O3 (Johnson Matthey) in powder form, was
pelletised and then crushed to obtain the required size range (53–
63, 63–75 & 75–90 μm) fractions by sieving. For loading the catalyst,
the microreactor was mounted in a Perspex feedthrough assembly
and connected to a vacuum line via its outlet port. Using a 200 μl
pipette tip as funnel, 10 mg of catalyst was weighed and loaded
into the reactor through the inlet port of the microreactor. The
temperature profile along the catalyst bed was obtained with six
thermocouples (K-type, Omega Engineering) positioned inside the
six slots perpendicular to the reaction channel.

Experimental platform

The feed stream to the microreactor consisted of methane, oxygen,
helium and nitrogen delivered using mass flow controllers (Brooks,
5850TR). Oxygen and methane (5% CH4/He) were mixed at a
junction, while nitrogen served as an internal standard. Pressure
sensors (Honeywell, 40PC, 100 psig) were connected at the inlet
and outlet tubing (Polytetrafluroethylene (PTFE), VICI Jour) of the
reactor assembly for pressure monitoring. A pressure controller
(Brooks, 5866) was positioned after the microreactor to maintain
the desired outlet pressure. The analysis of feed and effluent
streams was performed using an online gas chromatograph
(Agilent, 7890A). The configuration of the gas chromatograph
included a pneumatic sampling valve, sampling loop of 0.25 mL,
GS-Carbon PLOT (Agilent) and HP-PLOT molecular sieve (Agilent)
columns for separating CO2 and permanent gases respectively, and
thermal conductivity detector (TCD). OpenLab CDS 2.4 GC software

Figure 9. (a) Silicon-glass microreactor packed with Pd/Al2O3 catalyst, (b) Microreactor assembly for heating and interfacing the microreactor with inlet/outlet
streams.
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was used for method development and data processing during the
analysis. Figure 10 shows the major components of the set-up,
which included reactant delivery section, microreactor, online
analysis with GC and the control system, which contained the

Python algorithms, integrated to LabVIEW code for automating the
entire experimental process.

Experimental platform user interface for automation and
control

Laboratory Virtual Instrument Engineering Workbench (LabVIEW)
environment was used for automating the experimental process.
The LabVIEW code developed in this work allowed the user to run a
list of pre-planned experiments. The automation process in Lab-
VIEW consisted of four loop elements (see Figure 11) namely Timed
loop, Flat sequence structure, Case structure, and While loop. The
Timed loop repeated a given set of commands at given frequency
within the specified experimental duration. It controlled the
execution cycle, which checked and compared the set values to
process values within a stipulated period for each experiment. To
move out of the Timed loop one of two given conditions should be
satisfied. The two conditions were exceeding the experimental
duration or the imposed safety limits. Temperature and pressure
safety limits were set to 400 °C and 3 barg respectively, to ensure
the safe execution of the experiments. The user had the liberty to
set the cycle time (frequency) in the Timed loop; in this work, each
loop cycle took 10 s for execution, which translates to 120 cycles
for an experimental duration of 20 min. A sequential series of
events was executed one after the other by using a Flat sequence

Figure 10. Automated experimental set up for methane oxidation reaction in
a packed bed microreactor. MFC: mass flow controller, P: pressure controller,
T: temperature controller, GC: gas chromatograph.

Figure 11. Experimental platform user interface implemented for automation, showing the four loop elements, which include While loop, Case structure,
Timed-loop and Flat sequence.
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structure. The Flat sequence structure was made up of frames, which
were executed in an orderly sequence. From the second to the n-
pre-planned experiment, the Python code accessed the saved GC
results, as the first set of command in the Flat sequence. Next, the
record file was updated with the experimental conditions and the
outlet stream composition in an Excel file. Finally, the last command
in the Flat sequence sent the next pre-planned experimental
conditions to the hardware via the Timed loop. The Case structure
contained multiple subdiagrams, which were set of commands
within the Case structure executed for each experiment. For eight
pre-planned experiments, there were eight subdiagrams within the
Case structure and the ninth case structure was added as the default
setting. The number of pre-planned experiments was set at the
selector label using a numerical subdiagram identifier. The selector
label at the top line border of the Case structure displayed the value
of the subdiagram to be executed. The Case structure controlled the
sequence of experimental runs in an ascending order. All the
previous loops and structure stated were within the While loop
which controlled the repetitive operation in a virtual instrument
(VI), until all the planned experiments were performed. After that
the platform would be at the default settings specified at the
commencement of the experiment, which were set at temperature
of 20 °C and zero for the flowrate of reactants. The automated
process came to an end when the While loop was exited. This
happened either when the stop button was activated in the
LabVIEW front panel or the iteration number in the While loop
(LabVIEW block diagram) became equal to the number of the case
structure default setting as specified.

Software framework for screening of kinetic models

The software framework used for screening of kinetic models
consisted of a stand-alone Python module which was integrated to
the microreactor unit using the Python-LabVIEW interface described
above. The framework contained a set of Python functions for i)
Design of experiments, ii) Calibration of experimental platform by
estimating the random error in observations, iii) Parameter
estimation, iv) Screening of kinetic models and v) Practical
identifiability study and information mapping of adequate models.
The flowchart of the framework is illustrated in Figure 12.

Before describing the steps in the framework, it is important to
know the need for each of them, which is explained using a general
kinetic model represented by a set of differential and algebraic
equations (DAEs) in the form

f _x; x;u; qð Þ ¼ 0

ŷ ¼ g x;u;qð Þ
(1)

In Equation (1), x 2 RNx is the vector of differential state variables
(mole fractions of methane, oxygen, carbon dioxide and water),
u 2 RNu is the vector of input controls or conditions of experiments
(reaction temperature, inlet methane mole fraction, oxygen to
methane mole ratio and total flowrate of reactants), q 2 RNq is the
vector of unknown model parameters (pre-exponential factor,
activation energy and enthalpy of adsorption), ŷ 2 RNy is the vector
of model predictions for the response variables y, which are the
measured variables at the reactor outlet (mole fractions of
methane, oxygen and carbon dioxide). In the study of chemical
kinetics with a goal of obtaining predictive kinetic models, it is
important to identify and minimise the sources of uncertainties in
model predictions. The three major sources of uncertainties in
model predictions ŷ can be categorised as: (i) errors in the
measurements dy, (ii) errors in the input controls du and (iii) errors

in parameter estimates dq. Among these errors, except the error in
parameter estimates that is estimated, the other two are solely
related to the experimental platform and are directly controllable.
Therefore, it is important to assure that the platform is set to a level
of minimum dy and du with a reliable estimate of both errors.
Although cases exist in which errors in both input controls and
response variables, that is, du and dy are considered in estimating
unknown and non-measurable model parameters[33], we focus on
the case where there are errors in the measured response variables
only, which should also be evaluated in the calibration step. In the
framework shown in Figure 12, we estimate the random measure-
ment error dy in step 2 from the experiments designed in step 1.
The random measurement error is used along with the data in the
estimation of the unknown model parameters in step 3. In step 4,
we use the results of step 3 to select the most appropriate models
based on an adequacy test and a probability of model correctness
criterion. In step 5, we study the uncertainty in parameter estimates
dq and its allocation over the design space for the selected models
from step 4.

Figure 12. Block diagram showing the workflow of the software framework
used for screening of kinetic models.
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Design of experiments (DoE) methods

Design of experiments methods are pure statistical sampling
techniques which are used to sample the input design space, such
that the variability within the input domain is captured fully to
bring out the essential features of interest. The experiments
designed using the DoE methods are also used for the purpose of
estimation of random error in the observations (from few
repetitions of the DoE experiments). In this work, two DoE methods
were used – i) Fractional factorial design and ii) Latin hypercube
Sampling (LHS). The experiments designed using fractional factorial
design contain all possible combinations of high and low values of
the input design variables, thus covering the variability across the
full input domain including the interactions between input
variables. The experiments designed using the LHS method, on the
other hand, allow studying the variability of output variables due to
small changes in an input variable inside its domain.

Estimation of measurement error

Suppose a campaign of N factorial experiments are repeated m
times. In each factorial experiment, Ny number of response variables
are measured at a steady state time. This will generate N different
samples, each of size m� Ny . Each of the Ny dimensional
observations in any of the N samples is assumed to be corrupted
with uncorrelated normally distributed measurement error with
zero mean vector and Ny dimensional diagonal covariance matrix
SY, which is to be estimated using this step. The method of pooled
standard deviation[34] was used to define the standard deviation of
the measurement error of each of the response variables and these
were determined as the square root of the pooled variance,
computed for each response variable as

s2
pj
¼

PN
i¼1 ni � 1ð Þ2s2

ij
PN

i¼1 ni � 1ð Þ
8j ¼ 1; . . . ;Ny (2)

In Equation (2), s2
pj

is the pooled variance of the j-th response
variable, ni is the size of i-th sample, which in this case is m,
because all experiments are repeated m times and s2

ij is the variance
of j-th response variable in the i-th sample, which is computed as

s2
ij ¼

1
ni � 1

Xni
k¼1

ykj � �yij
� �2

8i ¼ 1; . . . ;N; 8j ¼ 1; . . . ;Ny (3)

In Equation (3), �yij is the mean of the j-th response variable in the i-
th sample.

Parameter estimation

In the parameter estimation step, the dataset Y with an estimate of
the random measurement error is fitted to the different identifica-
tion models by minimising some function of the residuals (the
difference between experimental values and model predictions).
Additional experiments other than those used for the calibration
purpose may be performed before the parameter estimation step.
In this work, parameter estimation was carried out using the
maximum-likelihood method within the Frequentist approach[35].
The likelihood function L q;Yð Þ provides the likelihood of observing
the dataset Y given the model parameters q. For the numerical
stability of the optimisation algorithm, parameter estimation was
solved by minimising the negative log-likelihood function accord-
ing to Equation (4).

minimize
q2V

� ln L q;Yð Þ

¼
NE � Ny

2
ln 2pð Þ þ

NE

2
ln det SYj jð Þ

þ
1
2

XNE

i¼1
yi � ŷi qð Þ
h iT

S� 1
Y yi � ŷi qð Þ
h i

(4)

In Equation (4) yi � ŷi qð Þ is the Ny � 1 dimensional vector of
residuals in i-th experiment, NE is the total number of experiments
conducted and SY is the Ny � Ny measurement covariance matrix,
which is a diagonal matrix with pooled variances of response
variables along the diagonal calculated from Equation (2).

Model adequacy and probability of correctness

After the parameter estimation step, the fitting quality, or the
adequacy of kinetic models at the maximum likelihood parameter
estimate bq is evaluated using the c2 goodness of fit test
(Equation (5)). The test compares the computed sum of squared
standard residuals at the maximum likelihood parameter estimate
to the c2 value from the c2 distribution with NE � Ny � Nq degrees of
freedom and a significance level (reference value c2

ref). A smaller
value of computed c2 compared to the reference value indicates an
adequate fit of the model to the observed data.

c2 ¼
XNE

i¼1
yi � ŷi qð Þ
h iT

S� 1
Y yi � ŷi qð Þ
h i

(5)

The result of adequacy test is used to define a probability criterion
which is used for the rapid screening of kinetic models in the
automated flow reactor platform. According to the proposed
probability criterion, the probability not to reject model s, Prs is
defined as

Prs ¼
Pr c2

s < c2
NE �Ny � Nq

1 � að Þ
� �

PNm
s¼1 Pr c2

s < c2
NE �Ny � Nq

1 � að Þ
� � � 100 % 8s ¼ 1; . . . ;Nm (6)

In Equation (6), the probability value Pr �ð Þ in the numerator and
denominator corresponds to the p-value obtained in the c2

goodness of fit test for the s-th model. The probability calculated
from Equation (6) is used as probability of model correctness in the
kinetic model screening procedure. Models which have the highest
probabilities Prs are deemed the most adequate to represent the
system.

Practical identifiability study and information mapping

The uncertainty in estimation of parameters of the most probable
models selected from the previous model screening step is
evaluated using a practical identifiability study described as follows.
The identifiability of model parameters can be quantified locally,
that is, at the maximum likelihood estimate by the observed Fisher
Information Matrix (FIM) HðbqÞwhich is approximated as

HðbqÞ ¼
XNE

i¼1

dy
dq

� �T

i
S� 1

Y

dy
dq

� �

i

�
�
�
�

q¼bq
(7)

In Equation (7), HðbqÞ denotes the Fisher information matrix
computed after NE experiments and dy

dq
represents the Ny � Nq

dimensional sensitivity matrix. The parameter covariance matrix Vq,
which is the common measure of precision of parameter estimates,
is approximated as the inverse of FIM.
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Vq ¼ V0
q

� �
� 1
þ
XNE

i¼1

dy
dq

� �T

i
S� 1

Y

dy
dq

� �

i

�
�
�
�

q¼bq

� �� 1

(8)

In Equation (8), V0
q is the prior covariance matrix of the model

parameters, which can be computed from the potential prior
knowledge of parametric space. From the parameter covariance
matrix, the linear confidence interval for individual parameters is
computed as

qr 2
bqr �

ffiffiffiffiffiffiffi
Vqrr

p
� tNE �Ny � Nq

1 �
a

2

� �n o
8r ¼ 1; . . . ;Nq (9)

In Equation (9), tNE �Ny � Nq
1 � a

2

� �
is the Student’s t-value from a

Student’s t-distribution with NE � Ny � Nq degrees of freedom and a

significance level, Vqrr
is the rr-th element of covariance matrix,

which denotes the variance of r-th parameter estimate. The
statistical precision of parameter estimates can be analysed using
the confidence intervals or from the Student’s t-test. In the t-test,
the test statistic computed according to Equation (10) is compared
to the Student’s t-value from a Student’s t-distribution with
NE � Ny � Nq degrees of freedom and a significance level (reference
t-value)

tr ¼
bqr

ffiffiffiffiffiffiffi
Vqrr

p
� tNE �Ny � Nq

1 � a

2

� � 8r ¼ 1; . . . ;Nq (10)

In cases where a parameter estimate has a larger confidence
interval compared to its estimated value, the t-value tends to be
smaller than the reference t-value, indicating that the parameter
has not been estimated precisely.

As described above, it can be inferred from both t-test and
confidence interval whether the information from the dataset is
sufficient to achieve a statistical precision of parameter estimates.
In cases of failure of t-test, that is, if the data appears to be not
informative enough, an easy method to check whether the model
parameters can be precisely identified using additional data
(potentially obtained through model-based design of experiments
methods) is to compute the rank of the Fisher Information Matrix
(FIM). In cases where the FIM is fully ranked and invertible, that is, if
rank H bq

� �
¼ Nq, it is understood that the model parameters are

not perfectly correlated and have non-zero sensitivities; thereby
suggesting that the parameters are practically identifiable.[36] In
situations where additional data is required to estimate the model
parameters precisely, the experimental design must be recalculated
to improve the identifiability of model parameters, which is not the
focus of this paper. However, before attempting to design new
experiments by solving an optimisation problem to improve
parameter precision, it is worth studying the allocation of
information across the design space based on the current data by
mapping the observed information over the design space. In this
work, such a mapping method was used to investigate the relative
contribution of individual experiments to the observed FIM. In this
mapping method, the Relative Fisher Information index (RFI)[17b] for
the adequate models was computed at each of the performed
experimental conditions. The RFI index for the s-th model at
conditions of the i-th experiment is obtained by the following
equation

RFIis ¼
Hi
bq
� �

PNE
i¼1 Hi

bq
� � 8s ¼ 1; . . . ;Nm (11)

In Equation (11), Hi
bq
� �

is the FIM of the i-th experiment and �
represents a metric (trace, determinant or eigenvalue) of the FIM. In
this work, the trace of the FIM was used to define the RFI.

Computational resources

In the proposed framework, the solution of differential equations
and simulation of kinetic models including the computation of
sensitivity matrix in Equation (7) were carried out using the odeint
function in SciPy package[37] (scipy.integrate.odeint) with lsoda
integrator. The parameter estimation problems were solved using
the nonlinear programming (NLP) solver SLSQP. The pyDOE module
in Python was used for the design of factorial and LHS
experiments[38].

Experimental procedure

The catalyst employed in this work was 5 wt.% Pd/Al2O3, as
relatively low temperature was used in the experiments. Lower Pd
loadings are common and are typically employed for higher
temperature operation (�600 °C). The catalyst in the microreactor
was pre-treated by ramping the temperature at 10 °Cmin� 1 to
400 °C for a hold time of 30 min under the reactant mixture (3% O2,
1.5% CH4, 30% He and 65.5% N2), which had been reported to
enhance catalyst activity[39], after which it was cooled to 200 °C. The
pre-planned design of experiments was uploaded into the platform
user interface. A stand-by condition was added as the last
experimental condition, which involved ramping of temperature
down to 25 °C and decreasing the reaction mixture supply to the
microreactor slowly to avoid catalyst being blown away. After
setting all required parameters at the user interface panel, such as
specifying the file to save the measurements of composition of
outlet stream, amount of catalyst, duration of each experiment,
user attention was not needed until all the experiments were
concluded. The lower and upper limits of the input variables for
both factorial and LHS design of experiments are presented in
Table 4.

A campaign consisting of eight experiments using fractional
factorial design, with variables methane inlet concentration,
reaction temperature, total flowrate and oxygen-methane ratio
(detailed experimental conditions are given in Supporting Informa-
tion, Table S1) was conducted in four replicates to gain preliminary
information about the reproducibility of the automated system and
characterise the measurement variance model. Subsequently, LHS
experiments were used for rapid screening and selection of
probable kinetic models, which took two days. On the first day the
experimental platform was set-up and fifteen experiments based
on LHS were performed, while the remaining fifteen experiments
and the kinetic model screening were concluded on the second
day. The robustness of the automated platform was also demon-
strated by the LHS experiments, as the set-up operated without
interruption for 10 h, obtaining 30 sample points (experimental
design conditions presented in the Supporting Information,

Table 4. Experimental variable ranges used in this work.

Control variable Lower limit Upper limit

Temperature [°C] 250 350
Total flow rate [mL/min] 20 30
O2/CH4 molar flowrate ratio 2 4
CH4 inlet mole fraction 0.015 0.025
He inlet mole fraction 0.300 0.500
O2 inlet mole fraction 0.030 0.100
N2 inlet mole fraction 0.375 0.655
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Table S2). The LHS design explores large area of the design space,
unlike the factorial design which is limited to only the extreme
conditions (lower and upper limits) of each input. Minimum and
maximum limits for each input variable were the same as for the
fractional factorial experimental design. LHS based experimental
conditions were generated using the PyDOE module in Python[40].
The ‘centre’ criterion which centres the sampling points for
experimental conditions within the design space was used for
designing the LHS experiments. Using the ‘centre’ criterion, the LHS
design had the benefit of exploring the centre of the design space
which was not covered in the factorial design.

Methane catalytic combustion kinetics

Methane combustion was chosen to test the automated platform
developed.

CH4 þ 2O2 ! CO2 þ 2H2O (12)

The reaction mechanism is strongly dependent on the type of
catalyst used. There are four broad categories of kinetic models,
which include empirical power law, Langmuir–Hinshelwood, Mars–
van Krevelen and Eley–Rideal. Kinetic models from each category
were selected for screening. In total thirteen kinetic rate expres-
sions were considered as presented in Table 5.

Reparametrisation of highly correlated kinetic parameters is an
important step in kinetic studies, as it enhances robustness of
model identification[13a] and minimises correlation effects among
kinetic parameters[21a]. The rate constant for the reaction is ex-
pressed as Equation (13)

ki ¼ ki;ref exp
� Eai
R

1
T �

1
Tref

� �� �

i ¼ 1 . . .Nr (13)

where ki is the reaction rate constant (molbar� 1 g� 1 s� 1), ki;ref is the
rate constant at reference temperature, taken as the average
temperature from the range of temperatures used
(mol bar� 1 g� 1 s� 1), Eai is the activation energy (Jmol� 1), R is the ideal
gas constant (Jmol� 1 K� 1), T is the reaction temperature (K), Tref is
the reference/mean temperature (K), i ¼ 1 . . .Nr , with Nr number of
reaction, for the Mars–van Krevelen model; 1, 2, and 3 refer to
oxidation, reduction and product desorption steps. For Langmuir–
Hinshelwood and Mars–van Krevelen models, the adsorption
equilibrium constants have an analogous expression Equation (14)

Ki ¼ Ki;ref exp
� DHi

R
1
T �

1
Tref

� �� �

i ¼ 1 . . .Nr (14)

where Ki is the adsorption constant (bar� 1), Ki;ref is the adsorption
constant at reference/mean temperature (K), DH is the heat of
adsorption (J mol� 1). The Arrhenius equation in reparametrised
form, which minimises correlations between parameters[44] is given
in Equation (15)

ki ¼ exp q1;i �
q2;i104

R
1
T �

1
Tref

� �� �

q1;i ¼ ln ki;ref q2;i ¼
Eai
104

(15)

For the equilibrium adsorption constant, the reparametrised
expression is Equation (16)

Ki ¼ exp q3;i �
q4;i104

R
1
T �

1
Tref

� �� �

q3;i ¼ lnKi;ref q4;i ¼
DHi

104

(16)

Table 5. Kinetic models of methane combustion over Pd catalyst considered for screening in the automated platform.

Model Category Description Rate expression Reference

1 Empirical Power Law Excess oxygen r ¼ kpCH4

[30a,41]

2 r ¼ kp0:8
CH4

[42]

3 Weak dependence of oxygen r ¼ kp0:9
CH4

p0:1
O2

Proposed by Hurtado et al.[27a,30b]

4 r ¼ kp0:8
CH4

p0:1
O2

[43]

5 Eley–Rideal Surface reaction between adsorbed methane and molec-
ular oxygen from gas phase

r ¼ ksr KCH4pCH4pO2

1þKCH4pCH4
Proposed by Hurtado et al.[27a]

6 Surface reaction between adsorbed molecular oxygen
and methane from gas phase

r ¼ ksr KO2pCH4pO2

1þKO2pO2
Proposed by Hurtado et al.[27a],
Specchia et al.[31]

7 Surface reaction between adsorbed atomic oxygen and
methane from gas phase r ¼

ksr pCH4

ffiffiffiffiffiffiffiffiffi
KO2pO2

p

1þ
ffiffiffiffiffiffiffiffiffi
KO2pO2

p
[29]

8 Langmuir–Hinshelwood Surface reaction between adsorbed methane and ad-
sorbed molecular oxygen

r ¼ ksr KCH4KO2pCH4pO2

1þKCH4pCH4þKO2pO2ð Þ2
Proposed by Hurtado et al.[27a],
Specchia et al.[31]

9 Surface reaction between adsorbed methane and dis-
sociatively adsorbed oxygen r ¼

kKCH4pCH4

ffiffiffiffiffiffiffiffiffi
KO2pO2

p

1þKCH4pCH4þ
ffiffiffiffiffiffiffiffiffi
KO2pO2

p� �2

Proposed by Hurtado et al.[27a],
Specchia et al.[31]

10 Surface reaction between adsorbed methane and two
atomic adsorbed oxygens

r ¼ kKCH4pCH4KO2pO2

1þKCH4pCH4þ
ffiffiffiffiffiffiffiffiffi
KO2pO2

p� �3 Proposed by Hurtado
et al.[27a], Specchia et al.[31]

11 Mars–van Krevelen Negligible chemisorbed oxygen and fast desorption of
products

r ¼ k1k2pCH4pO2

k1pO2þ2k2pCH4
Proposed by Hurtado et al.[27a]

12 Slow desorption of reaction products r ¼ k1k2pCH4pO2

k1pO2þ2k2pCH4þ k1k2=k3ð ÞpCH4pO2

[27a] proposed by Specchia
et al.[31]

13 Methane weakly adsorbed on the catalyst surface r ¼ k1k
0

2KCH4pCH4pO2

k1pO2þ2k02KCH4pCH4
Proposed by Hurtado et al.[27a]

When only a reference is provided, it indicates that the model was used by the authors, while “Proposed by” indicates that the model was considered as
one of potential candidate models.
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Reactor model

The Mears criterion was used to check for external mass transfer
limitations (see Supporting Information, section 2.1). A value of
0.026 was obtained, hence external mass transfer resistance was
ignored. The Weisz–Prater criterion was evaluated to check for
internal mass transfer limitations (see Supporting Information,
section 2.2). A value of 0.13, was calculated, hence internal mass
transfer resistances were assumed negligible. For external heat
transfer limitation to be ignored the computed value from the
Mear’s criterion should be <0.15, but a value of 0.3 was obtained,
hence the temperature difference between the fluid and catalyst
surface was computed (see Supporting Information, section 3.1)
and for the kinetic studies this temperature difference was added
to the measured temperature to approximate the catalyst particle
temperature. Internal heat transfer resistance could be ignored
based on the computed value of 0.007 for the Anderson criterion
(see Supporting Information, section 3.2). The reactor was assumed
to behave as an ideal plug flow reactor (PFR) (see Supporting
Information, section 4.0)[45]. The aspect ratio (microreactor depth
(420 μm) over catalyst particle average size (69 μm)) was 6.1. An
aspect ratio value >10 is typically required to minimise the
negative impact of wall effects. Though less than this threshold, a
similar value has been acceptable for similar small catalyst size,
since fast diffusion at this scale can minimise wall effects[46]. As
shown in 2.1, the reactor showed a constant temperature profile.
Considering all the above, a pseudo-homogeneous isothermal PFR
model was used for the calculations Equation (17)

dyi
dw ¼

RT
vPavg

siri i ¼ CH4; O2; CO2; H2O (17)

where si is the stoichiometric coefficient for the i-th species, ri is the
rate of reaction, v is the volumetric flow rate, y is the mole fraction,
Pavg is the average reactor pressure.
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