57 research outputs found

    DNA-Damage-Induced Differentiation in Hematopoietic Stem Cells

    Get PDF
    Aging of hematopoietic stem cells (HSCs) is accompanied by diminished functional potential. Wang et al. now provide evidence for an HSC-specific differentiation checkpoint mediated by the transcription factor BATF, which limits self-renewal of HSCs in response to the accumulation of DNA damage

    EFFECT OF FLUMETHRIN ON HEMATOLOGICAL AND BIOCHEMICAL CHANGES IN RATS

    Get PDF
    The effect of daily oral administration of flumethrin on the blood and tissue enzyme activity in albino rats was investigated. In the present study 12 (6 female and 6 male) rats were used and divided in to two groups. The first group served as the control group; the second group received flumethrin (1% pour on formulation) at dose rate of 2 mg/kg bw orally daily for 14 days. On 15th day, animals were sacrificed and blood and liver samples were collected. Flumethrin neither altered the hemoglobin level significantly nor the blood cell counts of rats. Flumethrin significantly altered the enzymatic activity of serum and liver tissue and also the serum and tissue protein. Flumethrin leads to increased MDA level, SOD and catalase activity in liver and blood samples of rats. The present study suggests that flumethrin is having toxic effect, producing oxidative stress in animal's body

    Self Interacting Dark Matter in the Solar System

    Get PDF
    Weakly coupled, almost massless, spin 0 particles have been predicted by many extensions of the standard model of particle physics. Recently, the PVLAS group observed a rotation of polarization of electromagnetic waves in vacuum in the presence of transverse magnetic field. This phenomenon is best explained by the existence of a weakly coupled light pseudoscalar particle. However, the coupling required by this experiment is much larger than the conventional astrophysical limits. Here we consider a hypothetical self-interacting pseudoscalar particle which couples weakly with visible matter. Assuming that these pseudoscalars pervade the galaxy, we show that the solar limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure

    Photon & Axion Oscillation In a Magnetized Medium: A Covariant Treatment

    Full text link
    Pseudoscalar particles, with almost zero mass and very weak coupling to the visible matter, arise in many extensions of the standard model of particle physics. Their mixing with photons in the presence of an external magnetic field leads to many interesting astrophysical and cosmological consequences. This mixing depends on the medium properties, the momentum of the photon and the background magnetic field. Here we give a general treatment of pseudoscalar-photon oscillations in a background magnetic field, taking the Faraday term into account. We give predictions valid in all regimes, under the assumption that the frequency of the wave is much higher than the plasma frequency of the medium. At sufficiently high frequencies, the Faraday effect is negligible and we reproduce the standard pseudoscalar-photon mixing phenomenon. However at low frequencies, where Faraday effect is important, the mixing formulae are considerably modified. We explicitly compute the contribution due to the longitudinal mode of the photon and show that it is negligible.Comment: 16 pages, no figure

    An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation

    Get PDF
    Differential next-generation-omics approaches aid in the visualization of biological processes and pave the way for divulging important events and/or interactions leading to a functional output at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptomics and proteomics approach to divulge differential gene expression of infant and pubertal rat Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogenesis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide computational analysis of relevant promoters employing 220 Positional Weight Matrices from the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant binding sites on promoters of genes upregulated during puberty. To determine its significance, we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised spermatogenesis

    An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation.

    Get PDF
    Differential next-generation-omics approaches aid in the visualization of biological processes and pave the way for divulging important events and/or interactions leading to a functional output at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptomics and proteomics approach to divulge differential gene expression of infant and pubertal rat Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogenesis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide computational analysis of relevant promoters employing 220 Positional Weight Matrices from the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant binding sites on promoters of genes upregulated during puberty. To determine its significance, we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised spermatogenesis

    Fgd5 identifies hematopoietic stem cells in the murine bone marrow

    Get PDF
    Hematopoietic stem cells (HSCs) are the best-characterized tissue-specific stem cells, yet experimental study of HSCs remains challenging, as they are exceedingly rare and methods to purify them are cumbersome. Moreover, genetic tools for specifically investigating HSC biology are lacking. To address this we sought to identify genes uniquely expressed in HSCs within the hematopoietic system and to develop a reporter strain that specifically labels them. Using microarray profiling we identified several genes with HSC-restricted expression. Generation of mice with targeted reporter knock-in/knock-out alleles of one such gene, Fgd5, revealed that though Fgd5 was required for embryonic development, it was not required for definitive hematopoiesis or HSC function. Fgd5 reporter expression near exclusively labeled cells that expressed markers consistent with HSCs. Bone marrow cells isolated based solely on Fgd5 reporter signal showed potent HSC activity that was comparable to stringently purified HSCs. The labeled fraction of the Fgd5 reporter mice contained all HSC activity, and HSC-specific labeling was retained after transplantation. Derivation of next generation mice bearing an Fgd5-CreERT2 allele allowed tamoxifen-inducible deletion of a conditional allele specifically in HSCs. In summary, reporter expression from the Fgd5 locus permits identification and purification of HSCs based on single-color fluorescence

    A conceptual framework for the adoption of big data analytics by e-commerce startups: a case-based approach

    Get PDF
    E-commerce start-ups have ventured into emerging economies and are growing at a significantly faster pace. Big data has acted like a catalyst in their growth story. Big data analytics (BDA) has attracted e-commerce firms to invest in the tools and gain cutting edge over their competitors. The process of adoption of these BDA tools by e-commerce start-ups has been an area of interest as successful adoption would lead to better results. The present study aims to develop an interpretive structural model (ISM) which would act as a framework for efficient implementation of BDA. The study uses hybrid multi criteria decision making processes to develop the framework and test the same using a real-life case study. Systematic review of literature and discussion with experts resulted in exploring 11 enablers of adoption of BDA tools. Primary data collection was done from industry experts to develop an ISM framework and fuzzy MICMAC analysis is used to categorize the enablers of the adoption process. The framework is then tested by using a case study. Thematic clustering is performed to develop a simple ISM framework followed by fuzzy analytical network process (ANP) to discuss the association and ranking of enablers. The results indicate that access to relevant data forms the base of the framework and would act as the strongest enabler in the adoption process while the company rates technical skillset of employees as the most important enabler. It was also found that there is a positive correlation between the ranking of enablers emerging out of ISM and ANP. The framework helps in simplifying the strategies any e-commerce company would follow to adopt BDA in future. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    Hydrogen bond radii for the hydrogen halides and van der Waals radius of hydrogen

    No full text
    In this article, the effective size of hydrogen in the hydrogen halides forming hydrogen bonded complexes is estimated. The scheme proposed by Bhadane and Gadre [J. Chem. Phys. 107, 5625 (1997)] for estimating the size of hydrogen in HF is extended to the other hydrogen halides (HCl and HBr) and HCN. It is noted that the radius of H atom in HF, HCl, HBr, and HCN are, respectively, 0.55±0.07, 0.74±0.08, 0.80±0.11, and 0.93±0.07Å. The radii found for HF, HCl, and HBr show a strong inverse correlation with the dipole moment of the HX. From this correlation the radius of H atom in HI is estimated to be 0.90±0.11Å. By extrapolating to zero dipole moment, the van der Waals radius of H atom is determined to be 1.0±0.1Å, reasonably close to the value proposed by Pauling, 1.2 Å
    corecore