
Full Paper

An integrated transcriptomics-guided genome-

wide promoter analysis and next-generation

proteomics approach to mine factor(s) regulating

cellular differentiation

Kamal Mandal1, Samuel L. Bader2, Pankaj Kumar3, Dipankar Malakar4,

David S. Campbell2, Bhola Shankar Pradhan1, Rajesh K. Sarkar1,

Neerja Wadhwa1, Souvik Sensharma1, Vaibhav Jain5, Robert L. Moritz2,

and Subeer S. Majumdar1,6*

1Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India, 2Institute for Systems

Biology, Seattle, WA 98109, USA, 3G.N.R. Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics

and Integrative Biology, New Delhi, India, 4Sciex, Gurgaon, Haryana, India, 5Next-Generation Sequencing Facility,

National Institute of Immunology, New Delhi, India, and 6National Institute of Animal Biotechnology, Miyapur,

Hyderabad, India,

*To whom correspondence should be addressed. Tel. 26717121; 26717145. Fax: 91-11-26742125/91-11-26742626. Email:

subeer@nii.ac.in

Edited by Dr. Toshihiko Shiroishi

Received 11 July 2016; Editorial decision 22 November 2016; Accepted 24 November 2016

Abstract

Differential next-generation-omics approaches aid in the visualization of biological processes

and pave the way for divulging important events and/or interactions leading to a functional out-

put at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptom-

ics and proteomics approach to divulge differential gene expression of infant and pubertal rat

Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogen-

esis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile

and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide

computational analysis of relevant promoters employing 220 Positional Weight Matrices from

the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of

nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between

the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of

pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as

one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant

binding sites on promoters of genes upregulated during puberty. To determine its significance,

we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised

spermatogenesis.
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1. Introduction

Tissue differentiation is an obligatory phenomenon in higher organ-
isms. There exists a cohort of cellular and molecular mechanisms to
fulfil this requisite of biological system. The proteome complement
of a cell type defines its differentiation/transformation status (e.g.
normal vs malignant status) and functionality. However, the prote-
ome profile is primarily determined by the transcriptomic comple-
ment of a cell that is governed by the nucleus.1,2 The coordinated
modulation and dynamical expression of a complement of transcrip-
tion factors (TF) direct lineage-specific developments of each cell
type.3 Such spatio-temporal regulation of differential gene expression
occurs due to interaction of trans acting factors (along with their
interacting partners) with genomic components, mainly promoters
and enhancers.4 These are guided by the nuclear proteome of each
cell dictated by the extracellular and intracellular signals and cumu-
latively govern transcriptional activity of chromatin carried out in
the nucleus.

We chose testicular Sertoli cells (Sc) to visualize dynamical gene/
proteome regulation upon maturation because this cell undergoes
maturation after birth. Infant Sc from 5-day-old rats are immature
and incapable to support germ cell (Gc) development, whereas by 12
days of age, Sc are well differentiated and regulate Gc development
successfully leading to robust onset of the process of spermatogen-
esis.5 Although levels of circulating FSH and testosterone (T), which
regulate spermatogenesis via Sc, are similar in infant (5 days) and pu-
bertal (12 days) rats,6–8 robust Gc differentiation is noticed only in
12-day-old testis. This suggests that there are endogenous cellular
switches or mechanisms leading to maturation of Sc during puberty,
which are missing during infancy. Use of modern analysis tools to
explore the transcriptomic and proteomic complement of such mat-
uration of cells, associated with its phenotype, may help us in resolv-
ing unexplained mechanisms identified in such cellular transitions.

Recent technological advancements provide new powerful tools
to compare comprehensive transcriptome or proteome profiles ob-
tained from multiple biological samples. Significantly large amounts
of information, including new regulatory pathways and hub mol-
ecules, have been identified using high-throughput omics-based
data.9,10

We report the key TF binding sites (TFBS) and associated nuclear
proteins present in infant and pubertal Sc of rats. For this, genome-
wide computational analysis of the promoters was performed.
Promoters of differentially expressed transcripts were determined
using data from microarray analysis of infant and pubertal Sc. TFBS
prediction of the promoters was done using TRANSFAC database.
Since activity of these TFBS is governed by nuclear proteome of the
cell type, quantitative nuclear proteome profiling was performed.
Since activity and functions of a protein can depend exclusively on
post-translational modifications (PTMs), discovery proteomics ap-
proach was performed to identify PTMs in the cytoplasmic and nu-
clear proteome of these two age groups of Sc. Comprehensive
quantitative analyses of proteome in nuclear and cytoplasmic frac-
tions of Sc were performed using data-independent acquisition (DIA)
proteomics (SWATH-MS) analysis.11,12

We established the role of YY1, a lead candidate obtained in this
study, in Sc differentiation using a transgenic knockdown model of
rat. To our knowledge, this is the first report of cataloguing the po-
tential TFBS that are active and required for onset of differentiation,
post birth. Such biological validation of omics-based output gener-
ated substantial support for undertaking such multi-omics approach-
based studies. This is the first report of comprehensive proteome

quantification (using SWATH-MS) in mammalian system at organ-
elle level.

2. Materials and methods

2.1. Promoter sequence retrieval and TF binding

analysis

The 62-kb promoter sequences centred at annotated transcription
start site (TSS) for all differentially expressed (up and down) and
control-set gene (un-expressed genes of same cardinality) promoters
were retrieved from UCSC-Galaxy (https://usegalaxy.org/). All these
promoter sequences [differentially expressed (up and down] and
control-set gene promoter sequences) were analysed for the presence
of different TFBSs using MATCHTM program available with
TRANSFACVR professional 12.1. The total occurrence of individual
TFBS on each differentially expressed gene-set promoter was con-
sidered as observed frequency. Similarly, the total occurrence of an
individual TFBS from control-set promoters divided by total pro-
moters in control-set gave the expected frequency of individual TFBS
(Fig. 1A). The discrepancy between the observed frequency and ex-
pected frequency for individual TFBS on differentially expressed (up
and down) gene-set promoters was evaluated by determining the
statistically variable chi-square (v2). All significantly enriched TFBS
(P<0.05) from both up-regulated and down-regulated gene-set pro-
moters were further interrogated for positional binding distribution
analysis (with respect to TSS).

2.2. TFBS interactome analysis

Interactome analysis was performed using STRING database in
order to determine the proteins associated with a set of TFBS. A set
of TFBS was queried against the STRING database to extract all
their interacting genes and proteins. Only high confidence (score-
>0.7) hits were allowed to appear with no >50 interacting partners.

2.3. Sertoli cell culture

Rattus norvegicus (Wistar rats) for this study was procured from the
small animal facility of National Institute of Immunology, New
Delhi. Animals were maintained and bred in accordance to the guide-
lines provided by CPCSEA, Government of India. All the experi-
ments involving animals in this study were approved by Institutional
Animal Ethics Committee.

Infant and Pubertal rat Sc were isolated and cultured as described
previously by us.5 Briefly, testes were surgically removed from the
animal and were decapsulated. Hanks Balanced Salt Solution was
used for all the tissue processing of the testis. The decapsulated testis
was then chopped and enzymatically digested with collagenase
(Sigma-Aldrich) and centrifuged down to eliminate Leydig cells and
other interstitial cells. Pancreatin (Sigma-Aldrich) was used for diges-
tion to disrupt the seminiferous tubules and separate the SC clusters
(groups of SC with attached germ cells) from the peritubular cells
and germ cells upon centrifugation. These Sc clusters were then
plated with DMEM-F12 medium with 1% serum foetal bovine
serum (FBS). The serum media was then replaced by 1% growth fac-
tor DMEM-F12 media. Germ cells were removed by hypotonic
shock 48 hours after plating. Pulsatile hormone treatment of FSH
and T was given 72 hours post plating as described previously.5 The
cells were harvested for further processing to obtain protein.
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Figure 1. Workflow used for (A) TFBS analysis using TRANSFAC database. (B) Comprehensive proteome quantification using SWATH analysis.
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2.4. Sample preparation for mass spectrometry

Nuclear and cytoplasmic protein fractions were isolated from cul-
tured Sc using NE-PERTM (Thermo Scientific, USA) Nuclear and
Cytoplasmic Extraction Reagents as per the manufacturer’s instruc-
tions. Protein fractions were diluted in 10 mM ammonium bicarbon-
ate. The diluted samples were then reduced with 25 mM
dithiothreitol (Sigma-Aldrich) at 60�C for 30 min followed by alkyl-
ation with 55 mM iodoacetamide (Sigma-Aldrich) at room tempera-
ture for 20 min. The samples were then incubated with porcine
sequencing grade modified trypsin (Promega V111) for overnight at
37�C in 1:10 ratio (trypsin to protein). The trypsin-digested sam-
ples were dried up using speed vac. The peptides obtained were
reconstituted in 0.1% formic acid solution for mass spectrometry
analysis.

2.5. Nano LC–MS/MS analysis

Chromatographic separation was performed on a NanoLC system
(NanoLC-2D Ultra, Eksigent). Peptides were trapped on a NanoLC
pre-column (ChromXP C18-CL-3 lm, I.D. 0.35�0.5 mm Eksigent)
and then eluted onto an analytical column (C18-CL-120, I.D.
0.075�150 mm, Eksigent). A 1,000-ng sample was loaded, trapped
and desalted at 3 ll/min for 37 min with 100% mobile phase A [2%
acetonitrile (Sigma-Aldrich) in 0.1% formic acid (Sigma-Aldrich)].
Peptides were separated at a flowrate of 250 nl/min using a stepwise
gradient of buffer B [98% acetonitrile (Sigma-Aldrich) in 0.1% for-
mic acid (Sigma-Aldrich)] from 5% to 10% B in the first 10 min and
from 10% to 40% in the following 60 min, from 40% to 50% in the
next 10 min. The column was washed after the gradient with 90% B
for 10 min before re-equilibrating to the initial chromatographic con-
ditions for 10 min.

2.6. Mass spectrometric analysis

Data acquisition was performed with a TripleTOF 5600 System
(SCIEX, Concord, ON, CA) fitted with a Nanospray III source
(SCIEX, Concord, ON, CA) and a pulled quartz tip as the emitter
(New Objectives, Woburn, MA). The electrospray source was oper-
ated with ion spray voltage of 2.2 kV, a curtain gas of 25 PSI, a nebu-
lizer gas of 20 PSI, and an interface heater temperature of 125 �C.
The MS was operated with a resolution greater than or equal to
30,000 full width at half maximum for TOF MS scans with mass
range 350–1250 m/z. For shotgun proteomics, information-depend-
ent acquisition (IDA) experiment, survey scans were acquired in 250
Mrs. Product ion scans with mass range 200–1800 m/z were col-
lected in high-sensitivity mode for the 20 most intense precursor with
an intensity higher than 150 counts per second and with a charge-
state between 2þ and 5þ. The cycle time was kept constant at 1.7 s.
Four time bins were summed for each scan at a pulser frequency
value of 11 kHz through monitoring of the 40 GHz multichannel
TDC detector with four-anode/channel detection. Rolling collision
energy (CE) with the default equations and a spread of 5 V was used
for collision-induced dissociation. Selected precursors were excluded
for 5 seconds after one occurrence.

2.7. SWATH-MS analysis

For data-independent acquisition, a SWATH-MS acquisition method
was generated using the ‘create SWATH’ mode. The mass range
from 350 to 1250 Da was covered with 36 selection windows with
an isolation width of 26 Da (25 Da of optimal ion transmission effi-
ciency 1 Da for the window overlap).11 The CE for each window

was determined using the same equation as for the IDA experiments
based on the 2þ charge precursor with a spread of 5 eV. The total
duty cycle was of 3.0 seconds (total 2.95 seconds for stepping
through the 36 isolation windows � 0.05 seconds for the optional
survey scan). The MS/MS acquisition was performed in high-
sensitivity mode corresponding to the mass resolution of about
15,000, which also enables to extract fragment ions with 10–50 ppm
accuracy.

2.8. SWATH-assay library generation

The Trans-Proteomic Pipeline was used for data analysis.13,14 All the
.wiff files obtained in IDA experiments were converted to .mzML
format using msconvert from ProteoWizard version 3.0.4624 select-
ing vendor-specific peak picking algorithm.15 All the .mzML files
were then independently searched against rat protein sequence file
using X!Tandem16 and Comet17 search. The rat protein sequence
contained all the sequence available in UniProt database (February
2015) supplemented with the common laboratory contaminant pro-
teins and decoy sequences generated by randomizing the rat protein
sequences using TPP v4.8.0 PHILAE, Build 201412031424-6764
(Linux). Carbamidomethylation of cysteine (þ57.021464) was set as
a fixed modification. Oxidation of methionine and acetylation of ly-
sine (þ14.0165,þ28.0313) was considered as variable modifica-
tions. A maximum of two missed cleavage was allowed. Precursor
and fragment ion mass tolerance were set to 75 and 30 ppm, respect-
ively. The .pep.xml files obtained from each search were statistically
evaluated using PeptideProphet followed by combining the results
using iProphet.

A consensus spectral library was built using SpectraST based on
the peptide spectrum matches with a P > 0.65, which corresponds to
a decoy estimated error rate of 0.41% on peptide level and SWATH-
MS assays were generated from this spectral library essentially as re-
ported previously.18 In short, we selected precursor ions in the mass
range of 400–1,250 Da, with at least 4 and at the most 100 fragment
ions with a charge state between 1þ and 4þ that fall in the mass
range of 350–2,000, but excluding the precursor mass window.

To normalize the retention time of the peptide, the retention time
of the peptides of all the runs were adjusted to the run with max-
imum number of identifications by linear regression. The normalized
retention time of each peptide was then determined, by taking the
median of all the retention time determined for the individual runs.
Finally, the rat SWATH-assay library was updated with the normal-
ized retention times.

2.9. SWATH-MS quantitation

The SWATH-MS files were interrogated with SWATH-assay library
(Fig. 1B) using MS/MSALL with SWATH-MS Acquisition MicroApp
version 2.0 and PeakView version 2.2 software (SCIEX, Concord,
ON, CA). Maximum six peptides were allowed for quantification of
a single protein with a maximum of six transitions per peptide. The
transition was extracted in a retention time window of 5 min
(62.5 min) and with a mass tolerance of 75 ppm. Peptides with a
minimum confidence level of 95% were used. False discovery rate
(FDR) threshold was kept below 5%. The filtered proteins and asso-
ciated peptides were exported to MarkerView version 1.2.1 software
(Sciex, Concord, ON, CA) for relative quantitative analysis. The me-
dian peak ratio method was used for the normalization of the quanti-
tative protein data for all samples of different groups. Statistical
analysis of the relative quantitation was performed by t-test analysis.
The protein levels with a P < 0.05 were considered significant. For
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all SWATH-MS quantitation in this study, three biological replicates
were used. For each biological replicate, there were three technical
replicates.

2.10. Gene ontology analysis

Gene ontology (GO) analysis was performed using GORILLA (Gene
Ontology Enrichment Analysis and Visualization Tool).19 The pro-
teins found to be in high abundance in nuclear or cytoplasm (fold
change>2, P<0.05) using SWATH-MS analysis were considered
for performing GO analysis.

2.11. PTM analysis

PTM search was performed using ProteinPilot software 5.0 (Sciex,
USA) employing Paragon Algorithm.20 All the three IDA files ob-
tained from the different biological replicates of each sample were
processed together. UniProt database in FASTA format was used as
sequence library of Rattus norvegicus. All biological and in vivo
modifications available with ProteinPilot were checked with global
FDR<1%.

2.12. Plasmid constructs design

The hairpin (TCAAGAG) and seed sequence of Yy1
(CGACGGTTGTAATAAGAAGTTTGCTCAGT)- and Luciferase
(GGATTTCAGTCGATGTACACGTTCGTCAC)-specific shRNA
were obtained from OriGene (USA). The forward and reverse DNA
strand of shRNA was procured from Sigma-Aldrich (USA). The se-
quence of both the strands was designed such that upon annealing it
generates a staggered ends compatible for ligation into EcoRI (50)
and SalI (30) digested vector. shRNA strands were annealed in NEB
buffer-2 using thermal cycler with initial incubation at 95 �C for 5
min. This mixture was then incubated at every temperature at the
interval of 2 �C for 1 second till it reached 85 �C. The temperature of
the mixture was thereafter decreased by interval of 0.1 �C every cycle
with incubation time of 1 second at every temperature till it reaches
25 �C followed by quick chill down to 4 �C. The shRNA annealing
was confirmed in a 4% agarose gel. The annealed oligo was then
ligated in the vector digested with EcoRI and SalI. Positive colonies
were screened by digesting the plasmid with AgeI (the restriction en-
zyme site for AgeI was added after the shRNA seed sequence and is
absent in the vector backbone).

2.13. Generation of transgenic rat

Transgenic rats with Sc-specific knockdown were generated using
the method of testicular electroporation as described previously by
us.21 Briefly, the maxi preparation of the YY1 knockdown
plasmid (GenEluteTM HP Plasmid Maxiprep Kit; Sigma Aldrich) was
linearized using the restriction enzyme Stu1 followed by ethanol pre-
cipitation. The linearized DNA was then injected into the testes of
38-day-old Wistar rats to generate a fore-founder animal. This fore-
founder was then co-habitated with wild-type female rat 60 days
after electroporation. The pups born were screened for the presence
of transgene using slot blot analysis.

2.14. Genomic DNA isolation and slot blot analysis

Genomic DNA was isolated from the tail snip of the pups using phe-
nol:chloroform isolation method.22 The isolated genomic DNA was
quantitated using Nanodrop 2000c spectrophotometer (Thermo
Scientific, USA). For slot blot analysis, 2 mg of g-DNA was blotted
onto positively charged nylon-66 membrane (M\DI Membrane

Technologies, Ambala Cantt, India) and probed with a-P32-labelled
DNA probe specific to the YY1 knockdown construct. The mem-
brane was then analysed using phosphorimager Typhoon 9400 (GE
Healthcare) to detect the transgene positive genomic DNA samples
(Supplementary Figure S2).

2.15. RNA extraction and real-time PCR analysis

Whole testicular RNA was extracted using TRI reagent (Sigma
Aldrich) as per the manufacturer’s instructions. All the real-time
PCR analysis was done as previously described by us.23 Extracted
RNA was quantified using NANO drop spectrophotometer (Thermo
Scientific, USA). One microgram of RNA was subjected to DNase
treatment followed by single-strand c-DNA synthesis using M-MLV
reverse transcriptase (Promega, USA) as per the manufacturer’s
protocol. The c-DNA was then used for real-time PCR analysis using
Mesa- green master mix kit (Eurogentech, Belgium) in StepOnePlus
Real Time PCR Systems (Applied Biosystems, USA). Gene expression
was normalized using cyclophilin as a reference and expression value
calculated as 2-DDct. Real-time PCR primers used in this study are
listed in Supplementary Table S12).

2.16. RNA sequencing analysis

The quality of the RNA was assessed using Bioanalyzer followed by
library preparation. These samples were then sequenced on Illumina
HiSeq 2500 platform with 2�100 Paired End cycles. RNA Seq reads
were aligned/mapped to the rat reference genome (UCSC rn4) using
TopHat2 (version 2.0.9).24 Expression quantification in terms of
Fragments Per Kilobase of transcript per Million mapped reads for
each of the transcripts were determined using Cufflinks (version
2.2.1)25 and differentially expressed genes at P<0.05 were identified
using Cuffdiff (version 2.2.1).26 RNA sequencing experiments were
performed in duplicates (biological replicates).

2.17. Protein extraction and immunoblot analysis

Total testicular protein was extracted using RIPA lysis buffer (G-
Biosciences, St. Louis, USA) with 1X protease inhibitor cocktail
(AMRESCO, USA). Protein concentration was determined using
BCA assay (G-Biosciences, St. Louis, USA). The primary antibodies
used were anti-YY1 alpha (Abcam, Cat. No. ab12132), anti-b-actin
(Cell Signalling Technologies, Cat. No.4967L). Secondary antibodies
used were anti-rabbit-horseradish peroxidase (HRP) conjugated
(Epitomics, Cat. No.3053-1). Luminol and hydrogen peroxide were
used as the substrate of HRP for developing the blot.

2.18. Histological analysis

Briefly, the rat testes were surgically removed and fixed in 4% paraf-
ormalydehyde followed by paraffin block preparation. Tissue sec-
tioning were done using microtome machine (2040AUTOCUT,
Reichert- Jung), followed by hematoxylin-eosin staining. The testes
sections were observed under bright field microscope (Eclipse
TiNikon).

The tubule diameters were measured in testis of rats by randomly
selecting 10 tubules in each section of testis from three rats. Mean
diameter of 10 tubules were used to determine average value.

2.19. Immunostaining

Sc were cultured and fixed in 2% paraformaldehyde. The cells were
permeabilized using 0.1% triton X-100 for 2 min followed by block-
ing with 3% BSA for 30 min. Primary antibody (Abcam, Cat. no.
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ab12132) was used at a dilution of 1:100 (overnight incubation,
4 �C). Secondary antibody alexafluor 488- goat anti-rabbit (Life
Technologies, Cat. no. A-11008) was used at a dilution of 1:500 (45
min incubation, RT), Nuclei were stained using Hoechst 3342. The
coverslips were mounted on glass slides using prolong gold Antifade
reagent (Invitrogen). Cell imaging was done using Ri-2 Epi-floures-
cence microscope (Eclipse TiNikon).

Testes were fixed in 4% paraformaldehyde followed by paraffin
block preparation and tissue sectioning as described above
(Histological analysis). The tissue sections were permeabilized in
0.5% triton X-100 for 20 min followed by blocking with 2% normal
goat serum for 30 min. Primary antibody (Abcam, Cat. no.
ab12132) was used at a dilution of 1:100 (overnight incubation,
4 �C). Secondary antibody alexafluor 488-goat anti-rabbit
(Life Technologies, Cat. no. A-11008) was used at a dilution of
1:500 (4-h incubation, RT), Nuclei were stained using
Hoechst 3342. Coverslips were mounted over the tissue sections
using prolong gold Antifade reagent (Invitrogen). Tissue imaging
was performed using Ri-2 Epi-flourescence microscope (Eclipse Ti
Nikon).

2.20. Sperm count analysis

The caput epididymis was surgically removed and minced in 5-ml
PBS solution in a petriplate. Ten microliters of the solution contain-
ing sperm was loaded into a Neubauer Haemocytometer, and the

spermatozoa were counted to determine the sperm count for each
animal.

3. Results and discussion

3.1. Unique sets of TFBS govern gene expression

programme in infant and pubertal Sc

Genes expressed during puberty allow onset of spermatogenesis,
which is restricted during infancy in majority of species.5,8 In order
to define TF-mediated differential gene regulation in infant and pu-
bertal Sc, we used gene expression data (DNA microarray) from
NCBI-GEO (GSE48795) previously submitted by our lab. We identi-
fied 735 genes predominantly down-regulated and 663 genes pre-
dominantly up-regulated (P<0.05 and fold change>2) in pubertal
Sc as compared to infant Sc (Fig. 2A and Supplementary Table S1).
Next, we asked which TFBSs were predominant within the pro-
moters of these differentially expressed genes. In order to address
this, we searched for 220 TFBS (vertebrate non-redundant Positional
Weight Matrices from TRANSFAC database) within 62-kb pro-
moter sequences of 735 up-regulated, 663 down-regulated and their
respective control set promoters (see Material and methods) using
the MATCHTM utility.27 The discrepancy between the frequency of
individual TFBS on up and down-regulated gene-set promoters
(observed occurrence) and that of control sets (expected by chance)
was evaluated independently (Fig. 1A) by determining the statistical
variable chi-square (v2).28 Considering a significance level of P<0.
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05, we identified 61 TFBSs on up-regulated and 56 TFBSs on down-
regulated gene-set promoters (Supplementary Table S2). Out of
these, 19 and 14 TFBSs were found exclusive on up-regulated and
down-regulated gene-set promoters, respectively (Fig. 2B).
Interestingly, we observed that binding sites for NF-AT1, C-Myb,
ER-alpha, SP-100, YY1 and HIF-1alpha were uniquely enriched on
up-regulated gene promoters (Figs 2C and 3C and Supplementary
Table S5) while C-EBP alpha, GR, LEF-1, MAFA, RFX1 and Smad4
were uniquely enriched on down-regulated gene promoters (Figs 2C
and 3C and Supplementary Table S5). The binding enrichment of
each TFBS on individual gene promoters (both up and down) has
been represented by a heat map (Fig. 3A and Supplementary Table
S3). Furthermore, clustering analysis suggested groups of genes with
exclusively high binding enrichment corresponding to a particular
TFBS (Fig. 3A).

Higher occurrence of 3 of the 19 TFBS, namely, GATA box, SF-1
and ER- alpha, in the promoter region of upregulated genes of pu-
bertal Sc was found compared to infant Sc. Significance of TFs cor-
responding to these three TFBS have been shown previously in the
testis displaying active spermatogenesis,29–32 strengthening the legit-
imacy of our TFBS analysis. Interestingly, the circadian rhythm-
related TFBS, namely, E-box, ROR alpha and Rev-Erba alpha, were
abundantly present in up-promoter-set. Association of Sc maturation
with photoperiod has already been reported before.33–35

3.2. Pattern of TFBS distribution along TSS

We analysed the positional distribution of each TFBS with reference
to annotated TSS of up- and down-regulated gene-set promoters. We
observed that in case of down-regulated gene sets, majority of TFBS,
namely, CEBP-alpha, COE1, GR, Kaiso, Lef-1, MAFA, RFX1,
Smad4, were uniformly distributed across 6 2-kb region flanking
TSS (Fig. 3B and Supplementary Table S4). However, in the case of
up-regulated gene sets, the majority of TFBS, namely, AP-1, Arid5a,
LXR, MECP2, Rev-ErbA alpha, ROR alpha, RP58, SF-1, SP100 and
ZBRK1, had specific positional location across the 6 2-kb region
centred to TSS, unlike uniform distribution observed in the case of
down-regulated gene sets (Fig. 3B). This observation is in agreement
with the previous report that suggests that TFBS associated with de-
velopment are uniformly distributed across the TSS.36 The positional
abundance of a particular TFBS with respect to TSS was calculated
in terms of its cumulative abundance in all the genes of its corres-
ponding gene set (up and down-gene-set).

In pubertal Sc, restricted positional abundance was observed for
many TFBSs. This is in agreement with a previous report suggesting
that for tissue-specific expression of genes (potentially regulating cel-
lular status of differentiation), there is a relation between positional
binding of TF with reference to TSS.37,38 We found that promoters
of up-regulated-gene-set of pubertal Sc, a terminally differentiated
cell, show strict positional restriction in the occurrence of TFBS with
reference to TSS (Fig. 3B). Heat map analysis revealed positional
abundance of many of the TFBS suggesting their symmetrical pres-
ence on both sides of TSS, in promoters of up-regulated genes of pu-
bertal Sc. Although there is no experimental evidence in support of
this observation, close proximity binding of some Zinc finger protein
flanking TSS (6 200 bases) has been previously reported using
TRANSFAC.28

3.3. Quantitative proteomics of cytoplasmic and

nuclear proteins in infant and pubertal Sc

The transcriptional activity of TFBS is governed by the nuclear
proteome profile. TF(s) that are found in cytoplasm but not in the
nucleus may not participate in gene expression. Interactome ana-
lysis using String database39 analysis suggested 75 genes to be asso-
ciated with the TFBS in case of downregulated-gene-set and 87
genes in case of upregulated-gene-set (using only high confidence
hits, score>0.7) of pubertal Sc as compared to infant Sc (Fig. 4A
and B and Supplementary Table S6). We applied state-of-the-art
SWATH-MS analysis to quantitatively profile the proteome of the
nuclear and the cytoplasmic fraction of infant and pubertal Sc. To
enable the targeted extraction of peptide assays from SWATH-MS
data, we generated a SWATH-assay library from biological tripli-
cates of each fraction and time point used in this study and com-
bined all assays into one comprehensive library (see Materials and
methods for details).The final SWATH assay library consists of
21,163 assays (an assay is a set of all the fragment ions correspond-
ing to a specific peptide ion) for 19,776 peptides mapping to 4,532
proteins (Fig. 1B).

Comprehensive relative quantification was performed using
SWATH-MS analysis (Fig. 5A–D and Supplementary Tables S7
and S8). Upon comparing the nuclear and cytoplasmic proteome of
5-day-old Sc, 3,164 proteins were quantified (Fig. 5A and
Supplementary Tables S7 and S8), of which 1,670 proteins were
differentially present in nucleus and cytoplasm fractions (P<0.05).
In case of 12-day-old Sc, 3,769 proteins could be quantified (Fig.
5C, Supplementary Tables S7 and S8) out of which 890 proteins
were found to be differentially present in nucleus and cytoplasm
fractions (P<0.05). In the nuclear proteome fraction of infant and
pubertal Sc, 3,027 proteins could be quantified (Fig. 5B,
Supplementary Tables S7 and S8), out of which 612 were found to
be differentially (P<0.05) localized in their nuclei. GO analysis
was done for the nuclear (nuclear/cytoplasmic, fold change>2,
P<0.05) and cytoplasmic (cytoplasmic/nuclear, fold change>2,
P<0.05) proteins in both cases (infant and pubertal Sc). Our GO
analysis showed high enrichment of chromatin and other DNA-
binding proteins in nuclear fraction and structural proteins associ-
ated with cytoskeleton were found in cytoplasmic fraction as ex-
pected. This indicates a successful nuclear and cytoplasmic
fractionation of Sc (Supplementary Figure S1).

Merging the IDA data of all the samples (nuclear and cytoplas-
mic of infant and pubertal Sc) and generation of a comprehensive
SWATH-assay library, ensured the availability of identification
spectra (high-quality spectra matching to a specific peptide) of all
those proteins that were present in high abundance even in one of
the samples. The availability of identification spectra for such a
wide range of proteins in the assay library ensured its quantification
by SWATH-MS analysis in all the samples even when it was present
in low abundance in some samples. Thus, such comprehensive
proteome quantification workflow enabled us to conduct quantita-
tive analysis across all proteome fractions at an unprecedented
quantitative depth, fulfilling our objective of quantifying most of
the differentially expressed proteins among the nuclear and cyto-
plasmic fractions of infant and pubertal Sc. This is the first report
of quantification of such a wide range of proteins in Sc utilizing
next generation proteomic SWATH-MS analysis.

GATA 4 and GATA zinc finger protein (Gatad2a) was found
to be in high abundance in nucleus of pubertal Sc (Supplementary
Tables S7 and S8). GATA box also appeared in our TFBS
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analysis, whose binding sites were found to be in high abundance
in the promoters of upregulated genes of pubertal Sc. Only few of
the proteins found in our TFBS interactome analysis could be
quantified using our SWATH-MS analysis. This is mainly because
of low abundance of TFs in general, whose inclusion in a
SWATH assay library demands their detection using a very

specialized strategy (acquisition of transition list using peptides
specific to a particular transcription factor obtained from in vitro
synthesis) of mass spectrometry.40 However, this can be per-
formed when the complete SWATH-assay library of rat covering
all expressed ORF’s becomes publicly available in SWATHAtlas
(www.swathatlas.org) (5 December 2016, date last accessed).

Figure 4. Depiction of interacting partners (build using STRING database) associated with the TFBS obtained from TRANSFAC analysis. (A) Up network and (B)

down network. See Supplementary Table S6.
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3.4. Differential set of unique PTM signatures in

nuclear and cytoplasmic proteome of infant and

pubertal Sc

Since activity of proteins (TFs, signalling components etc) depends
heavily on the PTMs, we interrogated our shotgun proteomic data of
nuclear and cytoplasmic fractions, which revealed numerous PTMs
in each proteome fraction. Most of the PTMs obtained were exclu-
sive to their nuclear or cytoplasmic presence in a specific age group,
though some overlap was there amongst them (Fig. 6A and B and
Supplementary Tables S9). This was expected since both the stages
of Sc are characteristically distinct from each other. The exclusive ap-
pearance of the PTMs in their respective proteome fraction suggested
the uniqueness of each proteome. All PTMs obtained in different
proteome fractions (nuclear and cytoplasmic of infant and pubertal
Sc) were categorized and represented in terms of the absence or pres-
ence of a particular PTM in a particular proteome. All the PTMs
identified across all fractions were analysed for categorical represen-
tation (Fig. 6C and Supplementary Table S10).

Our PTM analysis suggested histone-1.5, a linker histone, to be
geranylgeranylated in the nucleus only during infancy. However, its
nuclear enrichment with respect to cytoplasm was found to be ap-
proximately same in infant and pubertal Sc. Similarly, Rho-GDI
alpha was found to be succinylated in the nucleus only in infant Sc,
having roughly same nuclear enrichment in infant and pubertal Sc.
All these observation suggested our analysis to be a powerful re-
source for further studies on postnatal maturation of a cell type.

3.5. In vivo validation using transgenic knockdown rat

model

The TRANSFAC and SWATH-MS analysis of this study provided a
very powerful resource based on which several biological follow-up
studies can be undertaken. In order to authenticate it, we intended to
validate the role of one of the lead candidates obtained from this
study. YY1 was one such lead candidate found in this study. Our

TRANSFAC analysis showed high abundance of the binding sites of
YY1 on the promoters of the genes upregulated in pubertal Sc. The
SWATH-MS analysis also suggested YY1 to be localized in the nu-
cleus of pubertal Sc. Immunostaining studies of cultured pubertal Sc
further established the nuclear localization of YY1 (Fig. 7A).
Immunohistochemistry studies of pubertal testis section was also per-
formed in order to confirm the nuclear localization of YY1 in puber-
tal Sc at in vivo conditions (Supplementary Figure S3).These
observations suggested a strong basis for in vivo validation of TF
YY1 in Sc differentiation. To this end, we have generated a trans-
genic knockdown rat model of YY1 for in vivo validation of its role
in Sc differentiation. In order to do so, we generated a transgenic rat
that expressed shRNA against YY1 under Pem promoter. The ex-
pression of Pem promoter is restricted only in Sc from puberty on-
wards.41 Thus, YY1 knockdown rat model (YY1-KD) was supposed
to have low abundance of YY1 in pubertal and adult Sc. The control
animals were also generated employing similar strategy, expressing
shRNA targeted to Luciferase (Luc-KD).

The level of YY1 was found to be low in the YY1 knockdown
rats (Fig. 7B). As expected, the level of Anti-Mullerian Hormone
(Amh), a marker of immature Sc42 was found to be significantly high
in the YY1 knockdown rats as compared to the age-matched control
animals (Fig. 7C). Histological studies revealed reduction in semin-
iferous tubule size of knockdown rats by 35% (Fig. 7D and E). On
account of the presence of relatively less matured Sc in YY1 knock-
down rats, their sperm count declined by 60% as compared to the
control animals (Fig. 7E). The level of Gdnf also declined signifi-
cantly (P<0.05) in the YY1 knockdown rats as compared to the
controls (Fig. 7C). It was previously reported that Gdnf is required
for self renewal of Spermatogonial stem cells.43 Low level of Gdnf in
the YY1 knockdown rats explained its compromised ability to sup-
port quantitatively normal spermatogenesis leading to reduced sperm
count.

In an attempt to determine the comprehensive alteration in the
transcriptome profile on account of the knockdown of YY1, we
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Figure 6. Depiction of comprehensive PTM analysis. Each modification on a single protein has been recognized as a unique modification for representation (red

colour represents presence and blue colour represents absence of each modification). (A) Heat map depicting comprehensive PTM analysis of each proteome.

(B) Pie chart showing number of PTMs identified in each sample set. (C) Categorical representation of different PTMs. See Supplementary Tables S9 and S10.
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performed transcriptome sequencing analysis (RNA-seq) of testicular
RNA. It was found that 191 genes were differentially expressed sig-
nificantly (P<0.05) in YY1 knockdown rats as compared to the age-
matched control animals (Fig. 8A). Interestingly, we observed that
the promoters of 64 genes out of these 191 differentially expressed
genes harbouring at least one YY1 binding sites within close proxim-
ity (62 kb) of their TSS (Fig. 8B). GO analysis of these 191 differen-
tially expressed genes using GeneCodis44 suggested that these genes
are known to be involved in important cellular processes (Fig. 8C).
This indicated the importance of YY1 in maintenance of normal
functional status of pubertal Sc. In our transcriptomic analysis, genes
like Npy4r had several fold higher expression in YY1 knockdown
rat as compared to control animals (Fig. 8A) which was also vali-
dated by real time PCR (Supplementary Figure S4). Npy4r is known
to play an important role in obesity.45 Its elevated level in pubertal
Sc might be interesting for future studies. On the other hand, Krt72,
a keratin protein was found down-regulated in YY1 knockdown rats

(Fig. 8A), which was also confirmed by real time PCR
(Supplementary Figure S4). Future studies on functional link between
Krt72 and YY1 might be interesting.

All these observations suggested that YY1 plays a crucial role in
Sc differentiation and therefore attainment of functional maturity.
This study was conducted using knockdown approach and thus
ended up in partial loss of function of Sc in knockdown rats in terms
of sperm count. Sc specific as well as puberty specific knockout of
YY1 (using Pem promoter and lox-cre system) may result in com-
plete loss of function of Sc. However, this in vivo validation of the
role of YY1 in Sc differentiation using knockdown approach pro-
vided basis for further studies using other lead candidates obtained
in this study.

The next-generation omics methodologies coupled together with
computational integration of the TRANSFAC database used in this
work exemplify the ability to rapidly divulge molecular bases of cel-
lular differentiation. The computational prediction of differential
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Figure 7. In vivo validation of the role of YY1 in Sc differentiation (A) Nuclear localization of YY1 in cultured pubertal Sc. (B) Western blot showing knockdown

of YY1 in knockdown (YY1-KD) animals compared to age matched wild type (control) animals. (C) Real-time PCR analysis showing mRNA levels of Amh and

Gdnf. (D) Histology of YY1-KD and control animals (Luc-KD) showing reduced seminiferous tubule diameter. (E) Quantitative analysis of seminiferous tubule

diameter and sperm count of YY1-KD animals compared to Luc-KD animals. The animals used for real-time PCR, western blot, sperm count and histological

analysis were >8 weeks old. Error bars were represented as 6SEM, n¼3. Statistical significance was determined using Student’s t-test. *P< 0.05, ***P< 0.001.

12 Multi-omics analysis of cellular differentiation

Deleted Text: p&thinsp;<&thinsp;
Deleted Text: age 
Deleted Text: Figure 
Deleted Text: atleast
Deleted Text: Figure 
Deleted Text: Gene Ontology
Deleted Text: Figure 
Deleted Text: Figure 
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsw057/-/DC1
Deleted Text: .
Deleted Text: Figure 
Deleted Text: ) 
http://dnaresearch.oxfordjournals.org/lookup/suppl/doi:10.1093/dnares/dsw057/-/DC1
Deleted Text: <italic>-</italic>
Deleted Text: next 


abundance of TFBS on the promoters of the differentially regulated
genes followed by the differential enrichment of nuclear proteins
under two or more different context, using quantitative proteomics
approach, would provide more precise information about functional
regulation of different cellular states. Since functional aspects of pro-
teins are well coordinated by the PTMs, the comprehensive PTM
search in nuclear and cytoplasmic fraction of two cell type may be

useful in deciphering the mechanism behind cellular programming
from one state to another. This approach can be used to determine
differentially acting sets of TFBS and nuclear proteins in any two
altered states of a cell type.

This study evaluated differential abundance of nuclear proteins
and differential abundance of TFBS on the promoters of differentially
expressed genes under the two different cellular contexts. Elucidation
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Figure 8. Transcriptome analysis of YY1 knockdown animals. (A) Heat map showing fold change of each differentially expressed gene in testis of YY1 knock-

down animal as compared to the age matched Luc-KD control animals. (B) Representation of the YY1 binding sites over the promoters (62 kb across TSS) of

the differentially expressed genes (those having at least one YY1 binding site) along with their fold change in YY1-KD animals. (C) GO analysis of the differen-

tially expressed genes in YY1-KD animals. See Supplementary Table S11.
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of such differentially acting sets of nuclear proteins and TFBS can pro-
vide substantial information to predict the differentially acting sets of
signalling pathways of the two concerned cellular states. The know-
ledge about the differentially activated signalling pathways can also
be correlated to the cohort of external stimulus acting on the cell.46–48

Altogether, the outcome of the whole work can be used to visualize
the overall picture about the differentially acting molecular concert
under two physiologically different states. To our knowledge, this is
the first report with an unbiased approach to comprehensively inter-
rogate differentially acting nuclear proteins and TFBS under the two
or more cellular context using a multi-omic approach.

Although at this point, robust correlative studies of differential TFs,
TFBS and nucleus as well as cytoplasm-specific proteomes along with
their pattern of PTM is not possible, availability of more advanced
species-specific bioinformatics tools in future may allow one to do so.
We believe that use of such multi-omics strategies in other system
showing differential regulation of any function may pinpoint meaning-
ful candidates which are crucial to such functions after reduction of
the noise which is generated while using only single-omics approach.

3.6. Availability

All the mass spectrometry data was deposited in ProteomXchange
with accession number PXD003050 (IDA data) and PXD003056
(SWATH-MS data). The Rat SWATH-assay library was deposited in
the online resource SWATHAtlas with dataset identifier PASS00778
(www.swathatlas.org). The transcriptome sequencing data was de-
posited to NCBI (SRA) with BioProject ID PRJNA349782.
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